Abstract
Asymptotic behaviour of the Jacobi Sobolev-type orthogonal polynomials. A non-diagonal case. Rev. Acad. Colomb. Cienc. 34 (133): 529-539, 2010. ISSN 0370-3908. MATEMÁTICAS 1 Universidad Nacional de Colombia, Bogotá, Colombia. Correo electrónico: haduenasr@unal.edu.co 2 Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo No. 340, Colima, Colima, México. Correo electrónico: garzaleg@gmail.com AMS Classification 2000: 33C47. Consider the following Sobolev type inner product (p, q) = ∫ p'(x)q(x)(1 - x)θ(1 + x)θdx + i[p'(1)q(1) - p(1)q'(1)], (1) where p and q are polynomials with real coefficients, 0 < θ > -1, ξ(x) = (p(x), q(x))', and A = [M0, M1; M1, M2] is a positive semidefinite matrix, with M0M1 ≥ 0, and A ∈ ℝ. The family of polynomials orthogonal with respect to (1), P_n^{(θ,θ)}, are called Jacobi Sobolev-type orthogonal polynomials. An expression that relates this family of polynomials with P_n^{(0,0)}, the usual Jacobi orthogonal polynomials, was obtained in [8]. Here, we obtain the outer relative asymptotic for P_n^{(0,0)}, as well as the corresponding Mehlér-Heine formula.
Keywords
References
M. Alfaro, F. Marcellán, & M. L. Rezola, "Estimates for Jacobi-Sobolev type orthogonal polynomials," J. Appl. Anal. 67 (1997), 157-174.
M. Alfaro, F. Marcellán, M. L. Rezola, & A. Ronveaux, "On orthogonal polynomials of Sobolev type: Algebraic properties and zeros," SIAM J. Math. Anal. 23 (1992), 737-757.
M. Alfaro, F. Marcellán, M. L. Rezola, and A. Ronveaux, "Sobolev-Type orthogonal polynomials: The nondiagonal case," J. Approx. Theory 83 (1995), 266-287.
M. Alfaro, J. J. Moreno-Balcázar, A. Peña, & M. L. Rezola, "Asymptotics for a generalization of Hermite polynomials," Asymp. Anal. 66 (2010), 113-117.
R. Alvarez & J. J. Moreno-Balcázar, "Asymptotic properties of generalized Laguerre orthogonal polynomials," lndag. Math. (N.S) 15 (2004), 151-165.
G. E. Andrews, R. Askey, & R. Roy, "Special Functions," Encyclopedia of Mathematics and its Applications Vol. 71, Cambridge University Press, Cambridge (1999).
T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York (1978).
H. Dueñas & L. Garza, "Jacobi-Sobolev type orthogonal polynomials: Holonomic equation and electrostatic interpretation. A non-diagonal case," Submitted (2010).
H. Dueñas & F. Marcellán, "The Laguerre-Sobolev-type orthogonal polynomials," J. Approx. Theory 162 (2010), 421-440.
H. Dueñas & F. Marcellán, "Asymptotic behaviour of Laguerre-Sobolev-Type Orthogonal Polynomials. A nondiagonal case," J. Comput. Appl. Math. 235 (2010), 998-1007.
H. Dueñas & F. Marcellán, "The holonomic equation of the Laguerre-Sobolev-type orthogonal polynomials: a non-diagonal case," J. Difference. Equ. Appl. (2009). http://dx.doi.org/10.1080/10236190903456639
R. Koekoek, "Generalizations of Laguerre Polynomials," J. Math. Anal. Appl. 153 (1990), 576-590.
R. Koekoek & H. G. Meijer, "A generalization of Laguerre Polynomials," SIAM J. Math. Anal. 24 (1993), 768-782.
G. López Lagomasino, F. Marcellán & W. Van Assche, "Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product," Constr. Approx. 11 (1995), 107-137.
F. Marcellán & J. J. Moreno-Balcázar, "Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports," Acta Appl. Math. 94 (2006), 163-192.
F. Marcellán & J. W. Van Assche, "Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product," J. Approx. Theory 72 (2004), 193-209.
H. G. Meijer, "Zero distribution of orthogonal polynomials in a certain discrete Sobolev space," J. Math. Anal. Appl. 172 (1993), 520-532.
G. Szegő, "Orthogonal Polynomials," 4th ed., Amer. Math. Soc. Colloq. Publ. Series, vol 23, Amer. Math. Soc., Providence, RI, (1975).
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0