Abstract
Extracts from stems and leaves of sage (Salvia officinalis, Labiatae Fam.) and rosemary (Rosmarinus officinalis, Labiatae Fam.) and from guava leaves (Psidium guajava, Myrtaceae Fam.), were obtained using supercritical co2. Polynomic models were formulated to relate yield with extraction conditions. The compositions of the volatile fractions of these extracts were determined using Gc-MS. Their antioxidant capacity (oRAc) and the protection resultant from their addition to a cosmetic base subjected to lipid peroxidation as a result of its exposure to UV radiation were also measured. The extract from rosemary imparted the highest lipid peroxidation inhibition (88%), followed by those obtained from sage (76%) and guava leaves (43%). Rosemary and sage extracts exhibited a high antioxidant capacity (1,9 μmol Trolox®/mg), similar to those of BHT and vitamin E (2,8 and 3,0 μmol Trolox®/mg), respectively, and higher than that of the guava leaves extract (0,7 μmol Trolox®/mg.
Keywords
References
Adams, R. P. 2007. Identification of essential oil componentes by gas chromatography-mass spectrometry. 4a. Ed. Alluredbooks. carol Stream, Illinois, EE.UU.
Adam, F., Vahirua-Lechat, I. Deslandes, E. Menut, C. 2011. Aromatic plants of French Polynesia. V. chemical composition of essential oils of leaves of Psidium guajava L. and Psidium cattleyanum Sabine. J. Essent. oil Res. 23(1):98-101.
Aleksovski S.A., Sovová, H. 2007. Supercritical co2 extraction of Salvia officinalis L. J. Supercrit. Fluids. 40 (2):239-245.
Amin, A., Hamza A. A. 2005. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine’introduced toxicity in rats. Life Sci. 77(3):266-278.
Bisio, A. Romussi, G. Ciarallo, G. De Tommasi, N. 1997. Flavonoids and triterpenoids from Salvia blepharophylla. Pharmazie. 52:330–331.
Carvalho Jr., R.N., Lucinewton S., Moura, P, Rosa, T.V., Meireles, M.A.A. 2005. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract’s global yield, composition, and antioxidant activity. J. Supercrit. Fluids. 35:197-204.
Cavero, S., Jaime, L., Martín-Álvarez P.J., Señoráns, F.J., Reglero, G., Ibáñez, E. 2005. In vitro antioxidant analysis of SFE extracts from rosemary (Rosmarinus officinalis L.). Eur. Food Res. Technol. 221:478-486.
Chen, H.Y., Yen, G.C. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food chem. 101:686–694.
Chen, H.-Y., Yen, G.-C. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food chem. 101:686–694.
Cuvelier, M-E., Richard H., Berset C. 1996. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. oil. chem. Soc. 73:645–652.
FDA. 1981. Number of Brand Name Products in Each Product code, cosmetic Product Formulation Data. In Division of Cosmetics Technology 33–34, Food and Drug Administration, Washington, Dc.
Frankel, E. N., Hu, M. L., Tappel, A. L. 1989. Rapid headspace gas chromatography of hexanal as a measure of lipid peroxidation in biological samples. Lipids 24 (11):976-981.
Gawlik-Dziki, U., Świeca, M. 2007. Effect of various pH conditions simulated in vivo on the activity of lipophilic antioxidants isolated from selected spices. Pol. J. Food Nutr. Sci., 57 (3A):19-22.
Glisik, S., Ivanovic, J., Ristic, M., Skala, D. 2010. Extraction of sage (Salvia officinalis L.) by supercritical co2 : Kinetic data, chemical composition and selectivity of diterpenes. J. Supercrit. Fluids 52:62–70.
Halliwell, B., Chirico, S. 1993. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57: 715S-725S.
IARC. 1986. IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Some Naturally Occurring and Synthetic Food Components, Furocoumarins.
Ibañez, E., Kubátová, A., Señoráns, F.J., Cavero, S., Reglero, G., Hawthorne, S. B. 2003. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food chem. 51:375-382.
vanović, J., Đilas, S., Jadranin, M., Vajs,V., Babović, N., Petrović, S., Ižović, I. 2009. Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.). J. Serb. chem. Soc. 74 (7):717–732.
JECFA. 1996. Toxicological evaluation of certain food additives and contaminants in food. Who Food Additives Series 35:3–86. Joint FAo/WHo Expert committee on Food Additives, Geneva.
Luo, X. P., Yazdanpanah, M., Bhooi, N., Lehotay, D. C. 1995. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal. Biochem. 228: 294-298.
Magoulas, K., Louli, V., Papamichail, I. 2000. Supercritical fluid extraction of celery seed oil. J. Supercrit. Fluids 18:213-226.
Martínez, J. L. 2008. Supercritical Fluid Extraction of Nutraceuticals and Bioactive compounds. cRc Press, Boca Ratón, Florida, EE.UU.
Masaki, H., Sakaki, S., Atsumi, T., Sakurai, H. 1995. Active-oxygen scavenging activity of plant extracts. Biol. Pharm. Bull. 18:162–166.
Mockuté, D., Nivinskiené, O., Bernotiené, G., Butkiené, R. 2003. The cis-thujone chemotype of Salvia officinalis L. essential oils. chemija (Vilnius) 14(4):216-220.
Moura, P.M., Prado, G.H.C. Meireles, M.A.A, Pereira, C.G. 2012. Supercritical fluid extraction from guava (Psidium guajava) leaves: Global yield, composition and kinetic data. J. Supercrit. Fluids 62:116-122.
Ogunwande, I. A., Olawore, N. O., Adeleke, K. A., Ekundayo, O., Koenig, W, A. 2003. chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour Fragrance J. 18(2):136–138.
Ou, B., Hampsch-Woodill, M., Prior, R. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49:4619−4626.
Pérez, R. M., Mitchell, S., Vargas, R.. 2008. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 117:1–27.
Reverchon, E., Senatore, F. 1992. Isolation of rosemary oil: comparison between hydrodistillation and supercritical co2 extraction. Flavour Fragrance J. 7 (4):227–230.
Rižnar, K., Čelan, Š., Škerget, M., Knez, Ž. 2008. Solubility of carnosic acid and carnosol from rosemary extract in supercritical co2. Acta chim. Slov. 55:516–520.
Sagrero-Nieves, L., Bartley J.P. Provis-Schwede, A. 1994. Supercritical fluid extraction of the volatile components from the leaves of Psidium guajava L. (guava). Flavour Fragrance J. 9:135–137.
Schwarz, K.; Ternes, W. 1992. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Z. Lebensm.-Unters. Forsch. 195: 99−103.
Sebastián, S.L., Ramos, E., Ibáñez, E., Bueno, L., Ballester, J., Tabera, M., Reglero J.. 1998. Dearomatization of antioxidant rosemary extracts by treatment with supercritical carbon dioxide. J. Agric. Food chem. 46(1):13-19.
Shi, J., Khatri, M., Xue, S. J., Mittal, G. S., Ma, Y., Li, D. 2008. Solubility of lycopene in supercritical co2 fluid as affected by temperature and pressure. Sep. Purif. Technol. 66:322-328
Da Silva, D. J., Luz, A. I., da Silva, H. L. M., Andrade, E. H., Zoghbi, M. d. G. Maia, J. G. 2003. Essential oils of the leaves and stems of four Psidium spp. Flavour Fragrance J. 18(3):240–243.
Stashenko, E. E., Puertas, M. A., Salgar, W., Delgado, W., Martínez, J.R. 2000. Solid-phase microextraction with on-fibre derivatisation applied to the analysis of volatile carbonyl compounds. J. chromatogr. A. 886:175-181.
Stashenko, E. E., Puertas, M. Martínez, J.R. 2002. SPME determination of volatile aldehydes for evaluation of in-vitro antioxidant activity. Anal. Bioanal. chem. 373:70–74.
Thorsen, M. A., Hildebrandt, K. S. 2003. Quantitative determination of phenolic diterpenes in rosemary extracts: Aspects of accurate quantification. J. Chromatogr. A. 995 (1-2):119-125.
Wellwood, C. R. L. 2004. Rosemary A.c. relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.) accessions for optimization of antioxidant yield. J. Agric. Food chem. 52 (20):6101–6107.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales