ORTHOGONAL SYSTEMS AND PERMUTATION POLYNOMIAL VECTORS OVER MODULAR ALGEBRAS
PDF

How to Cite

Gonzalez, V. (2023). ORTHOGONAL SYSTEMS AND PERMUTATION POLYNOMIAL VECTORS OVER MODULAR ALGEBRAS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 36(139), 237–242. https://doi.org/10.18257/raccefyn.36(139).2012.2452

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Known results on orthogonal systems and permutation polynomials vectors over finite fields are extended to modular algebras of the form Lν = K[X]/(p(X)ν ), where K is a finite field, p(X) ∈ K[X] is an irreducible polynomial, ν = 1, 2, . . ., and to the algebra of formal power series L[[Z]], where L1 = K[X]/(p(X)) = L.

https://doi.org/10.18257/raccefyn.36(139).2012.2452

Keywords

permutation polynomials | orthogonal systems | permutation polynomial vectors
PDF

References

Acosta. S.P.A. & Albis, V. S. Characterization of multivariable permutation polymials in positive characteristic, Sao Paulo J. Math. Sci. 3 No. 1(2009), 1-12.

Acosta. S.P.A. & Albis, V. S. Permutation polymials in one indeterminate over modualr algebras, Rev. Acad. Colomb. Cienc. 30 No. 117(2006), 541-548 [MR: 2334082].

Albis, V. S. & Chaparro, R. On a conjeture of Borevich and Shafarevich, Rev. Acad. Colomb. Cienc, 21 (1997), 313-319. [MR: 98g: 11130]. Laigle-Chapuy, Y. Permutations polynomials and applications to coding theory., Finite Fields Appl. 13 (2007), 58-70.

Niederreiter, H. Orthogonal system of polynomials in several variables over finite fields. Proc. Japan Acad. 46 No. 9 (1970), 1001-1005. [MR:44#5298].

Niederreiter, H. Orthogonal system of polynomials in finite fields. Proc. Amer. Math. Soc, 28 (1971), 415-422. [MR: 45#230].

Nöbauer, Wilfred. Zur Theorie der Polymtransformationen und Permutations polynome, Math. Annalen 157 (1964), 233-342.

Shiue, P.J.S; Sun Q. & Zhang, Q. Multivariate permutation polynomials and ortogonal systems over residue class rings, Chinese. Ann. Math. Ser. A. 17 No. 1 (1996), 43-46. [in Chinese] [MR: 97e: 11152].

Smits, T. H. . On the group of units of GF (q) [X] /(a(X)). Indag. Math. 44 (1982), 355-35.

Sun, Q. A note on permutation polynomials vectors over Z/mZ, Adv. Math. (China) 25 No. 1 (1996), 311 -314. [In Chinese] [MR: 98h: 11157).

Zhang, Q.O Polynomials functions and permutation polynomials over some finite commutative rings, J. Number Theory 105 (2004), 192- 202.

Wei, Q. & Zhang. Q. On strong orthogonal systems and weak permutation polynomials over finite commutative rings, Finitive Fields Appl. 13 (2007), 113 – 120.

Zhang. Q. On the polynomials is several indeterminates which can be extended to permutations polynomials vector over XXX, Adv. Math 22 No. 5 (1993), 456-457.

Zhang. Q. Permutations polynomials in several indeterminates over Z/mZ, Chinese Ann. Math. Ser. A. 16 No. 2 (1995), 168-172. [in Chinese] [MR: 96g: 11143].

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales