Abstract
Known results on orthogonal systems and permutation polynomials vectors over finite fields are extended to modular algebras of the form Lν = K[X]/(p(X)ν ), where K is a finite field, p(X) ∈ K[X] is an irreducible polynomial, ν = 1, 2, . . ., and to the algebra of formal power series L[[Z]], where L1 = K[X]/(p(X)) = L.
References
Acosta. S.P.A. & Albis, V. S. Characterization of multivariable permutation polymials in positive characteristic, Sao Paulo J. Math. Sci. 3 No. 1(2009), 1-12.
Acosta. S.P.A. & Albis, V. S. Permutation polymials in one indeterminate over modualr algebras, Rev. Acad. Colomb. Cienc. 30 No. 117(2006), 541-548 [MR: 2334082].
Albis, V. S. & Chaparro, R. On a conjeture of Borevich and Shafarevich, Rev. Acad. Colomb. Cienc, 21 (1997), 313-319. [MR: 98g: 11130]. Laigle-Chapuy, Y. Permutations polynomials and applications to coding theory., Finite Fields Appl. 13 (2007), 58-70.
Niederreiter, H. Orthogonal system of polynomials in several variables over finite fields. Proc. Japan Acad. 46 No. 9 (1970), 1001-1005. [MR:44#5298].
Niederreiter, H. Orthogonal system of polynomials in finite fields. Proc. Amer. Math. Soc, 28 (1971), 415-422. [MR: 45#230].
Nöbauer, Wilfred. Zur Theorie der Polymtransformationen und Permutations polynome, Math. Annalen 157 (1964), 233-342.
Shiue, P.J.S; Sun Q. & Zhang, Q. Multivariate permutation polynomials and ortogonal systems over residue class rings, Chinese. Ann. Math. Ser. A. 17 No. 1 (1996), 43-46. [in Chinese] [MR: 97e: 11152].
Smits, T. H. . On the group of units of GF (q) [X] /(a(X)). Indag. Math. 44 (1982), 355-35.
Sun, Q. A note on permutation polynomials vectors over Z/mZ, Adv. Math. (China) 25 No. 1 (1996), 311 -314. [In Chinese] [MR: 98h: 11157).
Zhang, Q.O Polynomials functions and permutation polynomials over some finite commutative rings, J. Number Theory 105 (2004), 192- 202.
Wei, Q. & Zhang. Q. On strong orthogonal systems and weak permutation polynomials over finite commutative rings, Finitive Fields Appl. 13 (2007), 113 – 120.
Zhang. Q. On the polynomials is several indeterminates which can be extended to permutations polynomials vector over XXX, Adv. Math 22 No. 5 (1993), 456-457.
Zhang. Q. Permutations polynomials in several indeterminates over Z/mZ, Chinese Ann. Math. Ser. A. 16 No. 2 (1995), 168-172. [in Chinese] [MR: 96g: 11143].
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales