NON-GTPASE PROTEINS THAT SHARE COMMON MOTIFS WITH G DOMAINS: CONVERGENT OR DIVERGENT EVOLUTION OR DOMAIN RECOMBINATION?
PDF

How to Cite

Hernández-Torres, J., Pineda-Barbosa, A., & Chomilier, J. (2023). NON-GTPASE PROTEINS THAT SHARE COMMON MOTIFS WITH G DOMAINS: CONVERGENT OR DIVERGENT EVOLUTION OR DOMAIN RECOMBINATION? . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 34(132), 289–299. https://doi.org/10.18257/raccefyn.34(132).2010.2446

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

GTPases constitute a superclass of proteins with a common fold. Five specific G motifs located in loops are signatures of this superclass. Nevertheless, some proteins may share the fold of the small GTPases, although their functions are totally unrelated. To retrieve them, we specifically searched in the BLAST output listings for non-GTPases with available 3D structure, starting from a canonical GTPase sequence as a query. We then performed both a sequence analysis by means of HCA and a structural comparison with an established GTPase. It results that, although sequence identity is in the twilight zone, i.e. below 25%, one can evidence some conservations of the catalytic motifs. Nevertheless, mutations have occurred that produced a new function while the global fold is maintained. We discuss whether non-GTPases presumably originated from a common ancestor with an ancient G domain. The evolutionary mechanisms relating non-GTPases to GTPases that we can advance are sequence divergence, convergence, and DNA recombination. We conclude that the most probable evolutionary pathway leading to such structural similarities is that all the studied proteins must have evolved by sequence divergence from a primordial GTP-binding domain.

https://doi.org/10.18257/raccefyn.34(132).2010.2446

Keywords

HCA | GTP-binding domain | GTPase | protein evolution | protein folding | hydrophobic packing | sequence identity
PDF

References

Berman, HM., Z. Westbrook, FG. Gilliland, TN. Bhat, H. Weissig, IN. Shindyalov & PE. Bourne. 2008. The Protein Data Bank. Nucleic Acids Res. 28: 235-242.

Blouin, C., D. Butt & AJ. Roger. 2004. Rapid evolution in conformational space: a study of loop regions in a ubiquitous GTP binding domain. Protein Sci. 13: 608-616.

Bork, P., Sander, C. & A. Valencia. 1993. Convergent evolution of similar enzymatic function on different protein folds: The hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 2: 31-40.

Bourne, HR., DA. Sanders & F. McCornick. 1991. The GTPase superfamily: a conserved structure and molecular mechanism. Nature 349: 117-127.

Caldon, CE., P. Yoong & PE. March. 2001. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol. Microbiol. 41: 289-297.

Callebaut, I., G. Labesse, P. Durand, A. Poupon, L. Canard, J. Chomilier, B. Henrissat & JP. Mornon. 1997. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell. Mol. Life Sci. 53: 621-645.

Duax, WL., Huether, R., Pletnev. V., Umland, TC., Weeks, CM. 2007. Divergent evolution of a specific protein fold and identification of its oldest surviving ancestor. Biotechnology and Bioinformatics Symposium, Paper ID:50.

Frary, A., TC. Nesbitt, A. Frary, S. Grandillo, E. Van der Knaap, B. Cong, J. Liu, J. Meller, R. Elber, KB. Alpert & SD. Tanksley. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88.

Gaboriaud, C., V. Bissery, T. Benchetrit & JP. Mornon. 1987. Hydrophobic cluster analysis: an efficient new way to compare and analyze amino acid sequences. FEBS Lett. 224: 149-155.

Gerlt, JA. & PC. Babbitt. 2000. Can sequence determine function? Genome Biol. 1: 1-10.

Gómez del pulgar, T., SA. Benitah, PF. Valerón, C. Espina & JC. Lacal. 2005. Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27: 602-613.

Grishin, N. 2001.Fold change in evolution of protein structures. J Struct Biol 134:167-185.

Henikoff, S. & JG. Henikoff. 1994. Protein family classification based on searching a database of blocks. Genomics 19: 97-107.

Hernández Torres, J., MA. Maldonado Arias & J. Chomilier. 2007. Tandem duplications of a degenerated GTP-binding domain at the origin of GTPase receptor Toc159 and thylakoidal SRP. Biochem. Biophys. Res. Commun. 364: 325-331.

Kawabata, T. 2003. MATRAS: a program for protein 3D structure comparison. Nucleic Acids Res. 31: 3367-3369.

Lai, L., H. Yokota, LW. Hung, R. Kim & SH. Kim. 2000. Crystal structure of archaeal RNase HII: a homologue of human major RNase H. Structure 8: 897-904.

Lee, TT., S. Agarwalla & RM. Stroud. 2004. Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure 12: 397-407.

Larkin MA., Blackshields G., Brown NP., Chenna R., McGettigan PA., McWilliam H., Valentin F., Wallace IM., Wilm A., Lopez R., Thompson JD., Gibson TJ. & Higgins DG. 2007. ClustalW and ClustalX version 2. Bioinformatics 23: 2947-2948.

Leipe, DD., EV. Koonin & L. Aravind. 2003. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333: 781-815.

Leipe, DD., Y. I. Wolf, EV. Koonin & L. Aravind. 2002. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317: 41-72.

Liaw, SH., YJ. Chang, CT. Lai, HC. Chang & GG. Chang. 2004. Crystal structure of Bacillus subtilis guanine deaminase. J. Biol. Chem. 279: 35479-35485.

Liu, Z-P., Wu, LY., Wang, Y., Zhang, XS., Chen, L. 2008. Bridging protein local structures and protein functions. Amino acids. 35: 627-650.

Madaule, P. & R. Axel. 1985. A novel ras-related gene family. Cell 41: 31-40.

Paduch, M., F. Jelen, & J. Otlewski. 2001. Structure of small G proteins and their regulators. Acta Biochim. Pol. 48: 829-850.

Papandreou, N., Eliopoulos, E., Berezovsky, I., Lopes, A., Chomilier, J. 2004. Universal positions in globular proteins :observation to simulation. Eur. J. Biochem. 271: 4762-4768.

Reva, BA., AV. Finkelstein & J. Skolnick. 1998. What is the probability of a chance prediction of a protein structure with an rmsd of 6 Å? Fold. Des. 3: 141-147.

Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12: 85-94.

Shindyalov, IN. & PE. Bourne. 1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11: 739-747.

Shu, M., Zhou, T. & S. Hovmöller. 2008. Prediction of zinc-binding sites in proteins from sequence. Bioinformatics 24: 775-782.

Theobald, D., Wuttke, D. 2005. Divergent evolution within protein superfolds inferred from profile based phylogenetics. J. Mol. Biol. 354: 722-737.

Tobi, D. & R. Elber. 2000. Distance dependent, pair potential for protein folding: results from linear optimization. Proteins 41: 40-46.

Valencia, A., M. Kjeldgaard, EF. Pai & C. Sander. 1991. GTPase domains of Ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Proc. Natl. Acad. Sci. U.S.A. 88: 5443-5447.

Walker, JE., M. Saraste, MJ. Runswick & NJ. Gay. 1982. Distantly related sequences in the a and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951.

Wang, L., Qiu, Y., Wang, J., Zhang, X. 2008. Recongnition of structure similarities in proteins. Jrl Syst Sci & Complexity. 28:665-675.

Woodcock, S., JP. Mornon & Henrissat B. 1992. Detection of secondary structure elements in proteins by Hydrophobic Clus- ter Analysis. Protein Eng. 5: 629-635.

Zakon, HH. (2002) Convergent evolution on the molecular level. Brain Behav. Evol. 59: 261.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0