Microstructural characterization of pore types in unconventional gas reservoirs utilizing FEG-SEM: An example from the Galembo Member of the Cretaceous La Luna Formation, Middle Magdalena Valley Basin (Colombia)
PDF

Supplementary Files

Supplementary Information

How to Cite

Ríos, C. A., Castellanos Alarcón, O. M., & Casadiego Q, E. (2016). Microstructural characterization of pore types in unconventional gas reservoirs utilizing FEG-SEM: An example from the Galembo Member of the Cretaceous La Luna Formation, Middle Magdalena Valley Basin (Colombia). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(154), 161–175. https://doi.org/10.18257/raccefyn.243

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Mineralogy and microstructure are key variables defining the physical properties of a rock. Mudstones show inherently heterogeneous matrix pore-size distributions. They can show organic and inorganic pores and the transport mechanism through pores is different, and, therefore, it is necessary to describe their organic and inorganic porosity. This work uses Field Emission Gun Scanning Electron Microscopy to characterize the Galembo Member mudstones, Cretaceous La Luna Formation, Middle Magdalena Valley Basin, Colombia. There are several pore types in mudstones, including interparticle pores due to flocculation of clay minerals, organoporosity due to burial and thermal maturity of organic matter, intraparticle pores from organisms, intraparticle pores within mineral grains, and microchannels and microfractures, including dissolution, fillings and interlayer fractures. The existence of interconnected pores in such complex fracture-pore system provides effective pathways for primary gas migration and it also provides a storage space for the residual petroleum in mudstones, which is important for the primary migration and storage for mudstone gas resources. The pore connectivity is high and increases towards the top of the Galembo Member. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.243
PDF

References

Allen R.B., Alfonso, C.A., Ressetar, R., Salazar, A., Ballesteros, I., Cardozo, E., Laverde, F., Ramirez, C., Moreno, J.M., Rubiano, J. &

Sarmiento, L. (1993). The Cretaceous stratigraphy of the Western Cordillera Oriental, Colombia. University of South Carolina, Columbia, South Carolina, United States. AAPG Bulletin 02, 77(2).

ANH, 2008. Colombian Sedimentary Basins: Nomenclature, boundaries and petroleum geology, a new proposal, 92p.

Aguilera, R.C., Sotelo, V.A., Burgos, C.A., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D. & Osorno, J. (2009). Organic Geochemistry Atlas of Colombia: An Exploration Tool for Mature and Frontier Basins. Earth Sciences Research Journal 13, Special Edition 1-174.

Ballesteros, C.A. & Parra, J.A. (2012). Estudio estratigráfico secuencial para la Formación La Luna en el costado oriental de la Cuenca del Valle Medio del Magdalena: Una visión exploratoria de hidrocarburos no convencionales. Tesis de Pregrado. Universidad Industrial de Santander.

Barrero, D., Pardo, A., Vargas, C. & Martínez, J. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology. ANH and B&M Exploration Ltda 26-45.

Bennett, R.H., O’Brien, N.R. & Hulbert, M.H. (1991). Determinants of clay and shale microfabric signatures: processes and mechanisms, in Microstructure of Fine Grained Sediments: From Mud to Shale: Springer-Verlag, New York, p. 5-32.

Bernal, L.A. (2009). Caracterización estratigráfica y petrográfica de la Formación La Luna en el Sector de El Tablazo, Valle Medio Del Magdalena. 10th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. Session: Aprendiendo del Pasado - Mirando Hacia El Futuro. ACGGP.

Bernard, S., Wirth, R., Schreiber, A., Bowen, L., Aplin, A.C., Mathia, E.J., Schulz, H.M. & Horsfield, B. (2013). FIB-SEM and TEM investigations of an organic-rich shale maturation series from the lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions. In: Camp, W., Diaz, E., Wawak, B. (Eds.), Electron Microscopy of Shale Hydrocarbon Reservoirs. AAPG Memoir 102: 53-66.

Bjorlykke, K. (2013). Petroleum Geoscience from Sedimentary Environments to Rock Physics. Springer, p. 508.

Boles, J.R. & Franks, S.G. (1979). Clay diagenesis in Wilcox sandstones of southwestem Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49: 55-70.

Brothers, L., Engel, M.H. & Krooss, B.M. (1991). The effects of fluid flow through porous media on the distribution of organic compounds in a synthetic crude oil. Organic Geochemistry 17: 11-24.

Bruce, C.H. (1982). Relation of Illite/Smectite Diagenesis and Development of Structure in the Northern Gulf of Mexico Basin. Abstract, AAPG Bulletin 66 (9), pp.1443.

Casadiego, E. (2014). Caracterización de reservorios de gas shale integrando datos multiescala: Caso estudio Miembro Galembo, Sección Aguablanca, Cuenca del Valle Medio del Magdalena. Tesis de Maestría, Universidad Industrial de Santander, Colombia.

Chalmers, G.R.L., Bustin, R.M. & Power, I.M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin 96 (6): 1099-1119.

Chen, Sh., Zhu, Y., Wang, H., Liu, H., Wei, W. & Fang, J. (2011). Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 36: 6609-6616.

Curtis, J.B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86 (11): 1921-1938.

Curtis, M.E., Ambrose, R.J., Sondergeld, C.H. & Rai, Ch.S.(2012a). Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin 96 (4): 665-677.

Curtis, M.E., Cardott, B.J., Sondergeld, C.H. & Rai, Ch.S.(2012b). Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology 103: 26-31.

Day-Stirrat, R., Aplin, A., Środoń, J. & Van der Pluijm, B.(2008). Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland. Clays and Clay Minerals 56: 100-111.

Delle Piane, C., Almqvist, B.S.G., MacRae, C.M., Torpy, A., Mory, A.J. & Dewhurst, D.N. (2015). Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Marine and Petroleum Geology 59: 56-71.

Gale, J.F.W. & Holder, J. (2010). Natural fractures in some U.S. shales and their importance for gas production. Geological Society, London, Petroleum Geology Conference Series 7:1131-1140.

Garner, A.H. (1926). Suggested nomenclature and correlation of the geological formations in Venezuela. American Institute of Mining and Metallurgy Engineers Transactions 1: 677-684.

Guo, Ch., Bai, B., Wei, M., He, X. & Wu, Y.-S. (2013). Study on Gas Permeability in Nano Pores of Shale Gas Reservoirs. Colorado School of Mines SPE 167179 (1-11).

Hedberg, H.D. & Sass, L.C. (1937). Synopsis de las formaciones geológicas de la parte occidental de la Cuenca de Maracaibo, Venezuela. Servicio Técnico de Geología y Minería, Caracas, Boletín de Geología y Mineralogía (Venezuela) 2-4: 83-84.

Hill, R.J., Zhang, E., Katz, B.J. & Tang, Y. (2007). Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas. AAPG Bulletin 91 (4): 501-521.

Ho, N., Peacor, D. & Van der Pluijm, B. (1999). Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition. Clays and Clay Minerals 47: 495-504.

Hubach, E. (1957). Estratigrafía de la Sabana de Bogotá y alrededores. Instituto Geológico Nacional, Boletín Geológico 5 (2): 93-112.

Jarvie, D., Hill, R.J., Ruble, T.E. & Pollastro, R.M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin 91 (4): 475-499.

Jensen, L.A., Sanchez-Ferrer, F., Pliego-Vidal, E., Goudy, C. & Kertznus, V. (2013). Unconventional exploration potential of the Colombian basins: Perspectives from regional geology and structural evolution. AAPG International Conference (Cartagena, Colombia, 9/8-11/2013). Abstracts.

Jiao, K., Yao, S., Liua, Ch., Gao, Y., Wua, H., Li, M. & Tang, Z. (2014). The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China. International Journal of Coal Geology 128-129: 1-11.

Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D.N. & Clennell M.B. (2012). Laboratory characterisation of shale properties. Journal of Petroleum Science and Engineering 88-89: 107-124.

Kingston, D., Dishroon, C. & Williams, P. (1983). Global basin classification system: AAPG Bulletin 67 (12): 2175-2213.

Lafargue, E. & Barker, C. (1988). Effect of water washing on crude oil compositions. AAPG Bulletin 72 (3): 263-276.

Lash, G.G. & Blood, D. (2004). Geochemical and textural evidence for Early (shallow) diagenetic growth of strati-graphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology 206 (3-4): 407-424.

Lee, D., Herman, J.D., Elsworth, D., Kim, H.T. & Lee, H.S.(2011). A critical evaluation of unconventional gas recov-ery from the Marcellus Shale, Northeastern United States. KSCE Journal of Civil Engineering 15 (4): 679-687.

Loucks, R.G., Reed, R.M., Ruppel, S.C. & Jarvie, D.M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research 79: 848-861.

Loucks, R.G., Reed, R.M., Ruppel, S.C. & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin 96 (6): 1071-1098.

Lu, X.-C., Li, F.-C. & Watson, A.T. (1995). Adsorption measurements in Devonian shales. Fuel 74: 599-603.

Meulbroek, P., Cathles, L.M. & Whelan, J. (1998). Phase fractionation in South Eugene Island Block 330. Organic Geochemistry 29: 223-239.

Milliken, K.L. & Reed, R.M. (2010). Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai Accretionary Prism, IODP Expedition 316: Journal of Structural Geology 32: 1887-1898.

Milliken, K.L., Rudnicki, M., Awwiller, D.N. & Zhang, T.(2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin 97 (2): 177-200.

Modica, C.J. & Lapierre, S.G. (2012). Estimation of kerogen porosity in source rocks as a function of thermal transfor-mation: example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin 96 (1): 87-108.

Mondol, N.H., Bjorlykke, K., Jahren, J. & Hoeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates e changes in physical properties of mudstones during burial. Marine and Petroleum Geology 24: 289-311.

Montgomery, S. (1992). Petroleum potential of Upper and Middle Magdalena basins, Colombia. Petroleum Frontiers 9 (3), 67p.

Montgomery, S.L., Jarvie, D.M., Bowker, K.A. & Pollastro, R.M. (2005). Mississippian Barnett Shale, FortWorth Basin, north-central Texas: gas-shale play with multitrillion cubic foot potential. AAPG Bulletin 89 (2): 155-175.

Moore, C.H. (1997). Carbonate diagenesis and porosity. Developments in Sedimentology 46, 338p.

Morales, L.G., Podesta, D.J., Hatfield, W.C., Tanner, H., Jones, S.H., Barker, M.H., O’Donoghue, D.J., Mohler, C.E., Dubois, E.P., Jacobs, C. & Goss, C.R. (1958). General Geology and oil occurrences of the Middle Magdalena Valley, Colombia. In: Weeks, L.G. (Eds.), Habitat of Oil Symposium. AAPG 41: 641-695.

O’Brien, N.R. & Slatt, R.M. (1990). The fabrics of shales and mudstone; an overview. In: Burst, J.F., Johns W.D. (chairs). Clay Minerals Society, 27th annual meeting, program and abstracts: Clay Minerals Annual Conference 27, 99p.

Rangel, A., Giraldo, B., Munar, R., Olaya, I., García, M., Gutierrez, J., Parra, P. & Niño, Ch. (2000ª). Estratigrafía química y facies orgánicas del Terciario Inferior y Cretácico Superior del Piedemonte Llanero y Valle Oriental del Magdalena. Internal Report ECOPETROL- ICP.

Rangel, A., Parra, P. & Niño, C. (2000b). The La Luna Formation: chemostratigraphy and organic facies in the Middle Magdalena Basin. Organic Geochemistry 31 (12): 1267-1284.

Ramón, J.C., Dzou, L. & Giraldo, B. (1997). Geochemical evaluation of the Middle Magdalena Basin, Colombia. CT&F - Ciencia, Tecnología y Futuro 1 (3): 47-66.

Ramon, J.C. & Dzou, L.I. (1999). Petroleum geochemistry of the Middle Magadalena Valley: Colombia. Organic Geochemitry 30 (4): 249-266.

Reyes, J.P. (1996). Oil potential of the Cretacic megasequence and associated oil families in the Middle Magdalena Valley, Colombia. Memorias del V Congreso Latinoamericano de Geoquímica Orgánica, Cancún, p.105.

Reyes, J.P., Fajardo, A., Mantilla, M. & Barragán, M. (2000). Secuencia Calcárea del Cretáceo del Valle Medio Del Magdalena, Colombia. Una Nueva Frontera Exploratoria ACGGP.

Ritter, U. (2003). Solubility of petroleum compounds in kerogen: implications for petroleum expulsion. Organic Geochemistry 34: 319-326.

Ritter, U. & Grover, A. (2005). Adsorption of petroleum com-pounds in vitrinite: implications for petroleum expulsion from coal. International Journal of Coal Geology 62: 183-191.

Rodríguez, J.C. (2013). Challenges and opportunities for the development of Shale resources in Colombia. MSc thesis, The University of Texas, Austin.

Romero-Sarmiento, M.F., Ducros, M., Carpentier, B., Lorant, F., Cacas, M. Ch., Pegaz-Fiornet, S., Wolf, S., Rohais, S. & Moretti, I. (2013).

Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Marine and Petroleum Geology 45: 315-330.

Romero-Sarmiento, M.F., Rouzaud, J.N., Bernard, S., Deldicque, D., Thomas, M. & Littke, R. (2014). Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Organic Geochemistry 71: 7-16.

Ross, D.J.K. & Bustin, R.M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology 26:916-927.

Royero, J.M. & Clavijo, J. (2001). Memoria Explicativa Mapa Geológico Generalizado Departamento de Santander, escala 1:400.00. INGEOMINAS, Bogotá.

Schamel, S. (1991). Middle and Upper Magdalena Basins, Colombia. In: Biddle, K.T. (Eds.), Active Margin Basins. AAPG Memoir 52: 283-301.

Slatt, R.M. & O’Brien, N.R. (2011). Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine grained rocks. AAPG Bulletin 95 (12): 2017-2030.

Slatt, R.M., Philip, P., Abousleiman, Y., Singh, P., Perez, R., Portas, K., Marfurt, J., Madrid-Arroyo, N., O ́Brien, E., Eslinger, V. & Baruch, E. (2012). Pore-to-regional-scale, integrated characterization workflow for unconventional gas shales. In: Breyer, J. (Eds.), Shale reservoirs-Giant resources for the 21st century, AAPG Memoir 97: 127-150.

Sun, Y., Lu, X.C., Shu, L.S. $& Liu, H. (2008). Observation & determination of the nano-sized particle layer in rocks and its geological significance. Journal of Geomechanics 14 (1): 37-44.

Torres, E.J. (2013). Unconventional gas shale assessment of La Luna Formation in the central and south areas of the Middle Magdalena Valley Basin, Colombia. MSc thesis, University of Oklahoma, Norman.

Torres, E.J., Slatt, R.M., Philp, P. Brien, N.R.O. & Rodríguez, H.L. (2015). Unconventional resources assessment of La Luna Formation in the Middle Magdalena Valley Basin, Colombia. AAPG Annual Convention & Exhibition, Denver, Colorado, May 31-June 3, 2015.

Vermylen, J.P. (2011). Geomechanical Studies of the Barnett Shale, Texas, USA. PhD thesis, Stanford University, Stanford.Ward D.E., Goldsmith R., Jimeno V., Cruz B.J., Restrepo H. & Gómez, R. (1969). Mapa Geológico del Cuadrángulo H-12, Bucaramanga, Colombia. Ingeominas.

Warlick, D. (2006). Gas shale and CBM development in North America. Oil and Gas Financial Journal 3 (11): 1-5.

Weniger, P., Kalkreuth, W., Busch, A. & Krooss, B.M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology 84: 190-205.

Williams, K.E. (2012). The Permeability of Overpressure Shale Seals and of Source Rock Reservoirs is the Same. AAPG 2012 Annual Convention and Exhibition, Long Beach, California, 22-25 April.

Yao, S.P., Jiao, K., Zhang, K., Hu, W.X., Ding, H., Li, M.Ch. & Pei, W.M. (2011). An atomic force microscopy study of coal nanopore structure. Chinese Science Bulletin 56 (25): 2706-2712.

Zhang, T.W., Ellis, G.S., Rupple, S.C., Milliken, K. & Yang, R. (2012). Effect of organic matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry 47: 120-131.

Zumberge, J. (1984). Source Rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. In: Palacas J. (Eds.), Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. AAPG Studies in Geology 18: 127-133.

Zumberge, J., Ferworn, K. & Brown, S. (2012). Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Marine and Petroleum Geology 31: 43-52

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Journal of the Colombian Academy of Exact, Physical and Natural Sciences