IDENTIFYING THE INFLATON WITH THE STANDARD MODEL HIGGS BOSON
PDF (Español (España))

How to Cite

Peralta, C. D., & Rodríguez, Y. (2023). IDENTIFYING THE INFLATON WITH THE STANDARD MODEL HIGGS BOSON. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 36(138), 25–36. https://doi.org/10.18257/raccefyn.36(138).2012.2429

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Particles can generate primordial inflation of the slow-roll variety, which solves the classical problems of the standard cosmology. The crucial requirement, for this possibility to be feasible, is that the scalar Higgs field is, in a particular way, non-minimally coupled to gravity. A conformal transformation is performed from the Jordan’s frame to the Einsten’s frame so that a modification on the traditional Higgs potential is found for very large values of the fleld; this allows a high flatness zone and, therefore, primordial inflation of the rodadura lenta variety. The results associated to the spectral index and the tensor to scalar ratio are compared against the most recent observational bounds; from the latter, we conclude that the generation of the large scale structure is successful in this scenario.

https://doi.org/10.18257/raccefyn.36(138).2012.2429

Keywords

inflation | Higgs boson | non minimal | non-minimal coupling to gravity
PDF (Español (España))

References

Abbiendi G. et. al., 2003. Search for the Standard Model Higgs Boson at LEP, Phys. Lett. B 565, 61.

ALEPH Collaboration et. al., 2010. Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [hep-ex].

Allahverdi R., Brandenberger R., Cyr-Racine F.-Y., & Mazumdar A., 2010. Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci. 60, 27.

ATLAS Collaboration, 2012. Combined Search for the Standard Model Higgs Boson Using up to 4.9 fb-1 of pp Collision Data at √s =7 TeV with the ATLAS Detector at the LHC, Phys. Lett. B 710, 49.

Barbinsky A. O., Kamenshchik A. Yu., & Starobinsky A. A., 2008. Inflation Scenario Via the Standard Model Higgs Boson and LHC, JCAP 0811, 021.

Bennett C. L. et. al., 2003. First-Year Wilkinson Microwave Aniso-tropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Ser. 148, 1.

Bezrukov F. & Shaposhnikov M., 2008. The Standard Model Higgs Boson as the Inflaton, Phys. Lett. B 659, 703.

Bezrukov F. L., 2008. Non-Minimal Coupling in Inflation and In-flating with the Higgs Boson, arXiv: 0810.3165 [hep-ph].

Bezrukov F. L., Magnin A., & Shaposhnikov M., 2009. Standard Model Higgs Boson Mass from Inflation, Phys. Lett. B 675, 88.

Cervantes-Cota J. L. & Dehnen H., 1995. Induced Gravity Inflation in the Standard Model of Particle Physics, Nucl. Phys. B 442, 391.

CMS Collaboration, 2012. Combined Results of Searches for the Standard Model Higgs Boson in pp Collisions at √s =7 TeV, ar-Xiv:1202.1488 [hepex].

Deffayet C., Deser S., & Esposito-Farese G., 2009. Generalized Galileons: All Scalar Models whose Curved Background Extensions Maintain Second-Order Field Equations and Stress-Tensors, Phys. Rev. D 80, 064015.

Deffayet C., Esposito-Farese G., & Vikman A., 2009. Covarian Galileon, Phys. Rev. D 79, 084003.

Dimopoulos S., Kachru S., McGreevy J., & Wacker J. G., 2008. Nflation, JCAP 0808, 003.

Dodelson S., 2003. Modern Cosmology, Elsevier Academic Press, London -UK.

Elias-Miro J. et. al., 2011. Higgs Mass Implications on the Stability of the Electroweak Vacuum, arXiv:1112.3022 [hep-ph].

Germani C. & Kehagias A., 2010a. New Model of Inflation with Non-Minimal Derivative Coupling of Standard Model Higgs Bosonto Gravity, Phys. Rev. Lett. 105, 011302.

Germani C. & Kehagias A., 2010b. Cosmological Perturbations inthe New Higgs Inflation, JCAP 1005, 019. Erratum-ibid. 1006, E01.

Granda L. N., 2011. Inflation Driven by Scalar Field with Non-Minimal Kinetic Coupling with Higgs and Quadratic Potentials,JCAP 1104, 016.

Granda L. N. & Cardona W., 2010. General Non-Minimal Kinetic-Coupling to Gravity, JCAP 1007, 021.

Grifflths D., 2008. Introduction to Elementary Particles, Wiley-VCH, Weinheim - Germany.

Guth A. & Pi S., 1982. Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49, 1110.

Guth A. H., 1981. The Inflationary Universe: A Posible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347.

Harrison E. R., 1970. Fluctuations at the Threshold of Classical Cosmology, Phys. Rev. D 1, 2726.

Kamada K. et. al., 2012. Generalized Higgs Inflation, arXiv:1203.4059 [hep-ph].

Kamada K., Kobayashi T., Yamaguchi M., & Yokoyama J., 2011. Higgs G-Inflation, Phys. Rev. D 83, 083515.

Kane G., 1993. Modern Elementary Particle Physics: The Fundamental Particles and Forces?, Westview Press, Boulder -USA.

Kobayashi T., Yamaguchi M., & Yokoyama J., 2011. Generalized GInflation: Inflation with the Most General Second-Order Field Equations, Prog. Theor. Phys. 126, 511.

Komatsu E. et. al., 2011. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. Ser. 192, 18.

Linde A., 1982. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108, 389.

Linde A. D., 1983. Chaotic Inflation, Phys. Lett. B 129, 177.

Lyth D. H. & Liddle A. R., 2009. The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge University Press, Cambridge - UK. Mukhanov V. F., 2005. Physical Foundations of Cosmology, Cambridge University Press, Cambridge -UK. Nakamura K. et. al., 2010. The 2010 Review of Particle Physics, J. Phys. G 37, 075021.

Nakayama K. & Takahashi F., 2010. Running Kinetic Inflation, JCAP 1011, 009.

Nakayama K. & Takahashi F., 2011. Higgs Chaotic Inflation in Standard Model and NMSSM, JCAP 1102, 010.

Nicolis A., Rattazzi R., & Trincherini E., 2009. The Galileon as a Local Modification of Gravity, Phys. Rev. D 79, 064036.

Penzias A. A. & Wilson R. W., 1965. A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophys. J. 142, 419.

Rodríguez Y., 2009. The Origin of the Large-Scale Structure in the-Universe: Theoretical and Statistical Aspects, LAP - Lambert Academic Publishing, Saarbrücken - Germany. Also available as PhD Thesis, Lancaster University, Lancaster - UK, 2005. arXiv:astro-ph/0507701.

Smoot G. F. et. al., 1992. Structure in the COBE Differential Microwave Radiometer First-Year Maps, Astrophys. J. 396, L1.

Spokoiny B.L., 1984. Inflation and Generation of Perturbations in Broken Symmetric Theory of Gravity, Phys. Lett. B 147, 39.

Starobinsky A. A., 1979. Spectrum of Relict Gravitational Radiation and the Early State of the Universe, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719 [JETP Lett. 30, 682].

‘t Hooft G., 1980. Gauge Teories of the Forces Between Elemen-tary Particles, Sci. Am. 242, 90.

Van der Bij J.J., 1994. Can Gravity Make the Higgs Particle Decouple?, Acta Phys. Pol. B 25, 827.

Van der Bij J.J., 1995. Can Gravity Play a Role at the Electroweak Scale?, Int. J. Phys. 1, 63.

Wald R. M., 1984. General Relativity, The University of Chicago Press, Chicago - USA.

Weinberg S., 1972. Gravitation and Cosmology, John Wiley & Sons, New York - USA.

Weinberg S., 2008. Cosmology, Oxford University Press, Oxford -UK.

Zee A., 1979. Broken-Symmetric Theory of Gravity, Phys. Rev. Lett. 42, 417.

Zel’dovich Y. B., 1972. A Hypothesis, Unifyng the Structure and the Entropy of the Universe, Mon. Not. R. Astron. Soc. 160, 1P.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales