SYNTHESIS OF HYDROGELS BASED ON ACRYLAMIDE AND ALLYLMALONIC ACID AND THEIR USE IN DRUGS CONTROLLED DELIVERY
PDF (Español (España))

How to Cite

A. Muñoz, G., & Zuluaga, F. (2023). SYNTHESIS OF HYDROGELS BASED ON ACRYLAMIDE AND ALLYLMALONIC ACID AND THEIR USE IN DRUGS CONTROLLED DELIVERY. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 33(129), 539–548. https://doi.org/10.18257/raccefyn.33(129).2009.2382

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The preparation of hydrogels from acrylamide (AA) and allylmalonic acid (AAM) in different ratios, via free radical polymerization in aqueous solution, is described in this paper. Allymalonic acid was obtained by malonic synthesis starting from dimethyl malonate and allyl bromide. The hydrogels obtained in this way were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The swelling kinetics of the hydrogels was studied in deionized water at 27ºC and 37ºC with different pH values. Finally, kinetic studies of the delivery of acetylsalicylic acid, as active component, at 37ºC and pH = 7.4 (buffer of phosphates) were performed.

https://doi.org/10.18257/raccefyn.33(129).2009.2382

Keywords

hydrogels | allylmalonic acid | acrylamide | drugs controlled delivery | acetylsalicylic acid
PDF (Español (España))

References

Allen, P.; Bennett, D. J.; Williams, D. 1992. Water in methacrylates I. Sorption and desorption properties of poly (2-hydroxyethyl methacrylate-coglycol dimethacrylate) networks. Eur. Polym. J. 28, 347-352.

Bajpai, S.; Johnson, S. 2006. Poly(acrylamide-co-maleic acid) Hydrogels for Removal of Cr (VI) from Aqueous olutions, Part 1: Synthesis and Swelling Characterization. J. Appl. Polym. Sci. 100, 2759-2769.

Bruck, S. 1973. Polymeric materials: Current status of biocompatibility. Biomater. Med. Devices, Artif. Org. 1, 79-98.

Caykara, T.; Dogmus, M. 2004. The effect of solvent composition on swelling and shrinking properties of poly (acrylamide-coitaconic acid) hydrogels. Eur. Polym. J. 40, 2605-2609.

El-Hamshary, H. 2007. Synthesis and water sorption studies of pH sensitive poly (acrylamide-co-itaconic acid) hydrogels. Eur. Polym. J. 43, 4830-4838.

Elliott, J; Macdonald, M; Nie, J; Bowman, C. 2004. Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer. 45, 1503-1510.

Fundueanu, G.; Constantin, M.; Stanciu, C.; Theodoridis, G.; Ascenzi, P. 2009. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release. J Mater Sci: Mater Med. 20, 2465-2475.

Gallardo, A.; San Román, J. 1998. Contribución de los polímeros al diseño y desarrollo sistemas microencapsulados de interés biomédico Rev. Plastic. Modern. 75 (504), 577-581.

García, D; Escobar, J; Bada, N; Casquero, J; Hernáez, E; Katime, I. 2004. Synthesis and characterization of poly (methacrylic acid) hydrogels for metoclopramide delivery. Eur. Polym. J. 40, 1637-1643.

Karadag, E.; Saraydin, D.; Cetinkaya, S.; Giiven, O. 1996. In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials. 17, 67-70.

Katime, I.; Novoa, R.; Díaz De Apodaca, E.; Mendizábal, E.; Puig, J. 1999. Theophylline release from poly (acrylic acid-coacrylamide) hydrogels. Polymer Testing. 18, 559-566.

Katime, I., Zuluaga, F. 2001. Swelling kinetics and release studies of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels. Eur. Polym. J. 37, 1465-1471.

Krusic, M.; Filipovic, J. 2006. Copolymer hydrogels base don N-isopropylacrylamide and itaconic acid. Polymer. 47, 148-155.

Krusic, M.; Ilic, M.; Filipovic, J. 2009. Swelling behaviour and paracetamol release from poly N-isopropylacrylamide-itaconic acid) hydrogels. Polym. Bull. 63, 197-211.

Parejo, C; Ortiz, C; Vázquez, B; Gallardo, A.; San Román, J. 1998. Hidrogeles polímeros para aplicaciones biomédicas. Comportamiento de sistemas neutros. Rev. Plastic. Modern. 75(499), 96-100.

Peppas, N. A.; Bures, P.; Leobandund, W.; Ichikawa, H. 2000. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27-46. ; Leobandung, W. 2004. Stimuli-sensitive hydrogels in chronotherapeutic Applications. J. Biomater. Sci. Polym. Ed. 15, 125-144.

Prior-Cabanillas, A.; Quijada-Garrido, I.; Frutos, G.; Barrales-Rienda, J.M. 2005. Influence of the swelling history on the swelling kinetics of stimuli-responsive poly [(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. Polymer. 46,685-693.

Qiu, Y.; Park, K. 2001. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 53, 321-339.

Ray, D.; Mohapatra D.; Mohapatra, R.; Mohanta, G.; Sahoo, P. 2008. Synthesis and colon-specific drug delivery of a poly (acrylic acid-coacrylamide)/MBA nanosized hydrogel. J. Biomater. Sci. Polymer Edn. 19, 1487-1502.

Ross-Murphy, S. B.; McEvoy, H. 1986. Fundamentals of hydrogels and gelation. Polym. J. 18, 2-7.

Sáez, V.; Hernáez, E.; Sanz, L. 2004. Mecanismos de liberación de fármacos desde materiales polímeros. Rev. Iberoam. Polim. 5 (1), 55-65.

Saraydin, D.; Ünver-Saraydin, S.; Karadag, E.; Koptagel, E.; Güven, O. 2004. In vivo biocompatibility of radiation crosslinked acrylamide copolymers. Nucl. Instr. and Meth. in Phys. Res B. 217, 281-292.

Shibayama, M.; Tanaka, T. 1993. Volume phase transition and related phenomena of polymer gels. Adv. Polym. Sci. 109, 1-62.

Üzüm, Ö.; Karadag, E. 2005. Equilibrium Swelling Studies of Highly Swollen Acrylamide/Mesaconic Acid Hydrogels. J. Appl. Polym. Sci. 96, 2253-2259.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales