HOT FILAMENT-CVD GROWN DIAMOND FILM QUALITY EVALUATION BY RAMAN SPECTROSCOPY AND ATOMIC FORCE MICROSCOPY
PDF (Español (España))

How to Cite

Rivera, W., Devia, A., & Pérez, J. (2023). HOT FILAMENT-CVD GROWN DIAMOND FILM QUALITY EVALUATION BY RAMAN SPECTROSCOPY AND ATOMIC FORCE MICROSCOPY. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 33(129). https://doi.org/10.18257/raccefyn.33(129).2009.2381

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

This paper reports the growth of diamond film deposited on crystalline silicon (111) through the HFCVD technique. Raman spectroscopy allows evaluating progressive degradation of the  quality of the films due to the combined effect of methane concentration and the decrease in substrate temperature. The best quality films show an acute and narrow Raman peak with a FWHM of 8.07 cm-1, coincident in its 1332 cm-1 position to the peak of natural diamond. Characterization through AFM allows establishing fine quality criteria of the film according to the grain size and the roughness of the surface. AFM analysis of films grown in equal thermodynamic conditions reveals significant morphological differences. Diamond films deposited by HFCVD seem reproducible if Raman spectroscopy criteria are applied but present significant differences in the AFM resolution scale.

https://doi.org/10.18257/raccefyn.33(129).2009.2381

Keywords

diamond | chemical vapor deposition (CVD) | Raman spectroscopy | surface morphology | crystalline grains | Atomic Force Microscopy (AFM)
PDF (Español (España))

References

Bundy F.P., Hall H.T., Strong H.M., Wentorf R.H.1955. Man-made diamonds, Nature 176, 51-55.

Deryagin B.V., Fedoseev D.V., Polyanskaya N.D., Statenkova E.V. 1976. Epitaxial diamond-graphite films, Sov. Phys. Crystallogr. 21, 239-240.

Donato M.G., Faggio G., Marinelli M., Messina G., Milani E., Paoletti A., Santangelo S., Tucciarone A., Verona Rinati G. 2001. High quality CVD diamond: a Raman scattering and photoluminescence study, Eur. Phys. Journal B 20, 133–139.

Fan Y., Fitzgerald A.G., John P., Troupe C.E., Wilson J.I.B. 2000. Scanning probe microscopy and spectroscopy of CVD diamond films, Mikrochim. Acta 132, 435-441.

Hassan I.U., Rego C.A., Ali N., Ahmed W., O’Hare I.P. 1999. An investigation of the structural properties of diamond films deposited by pulsed bias enhanced hot filament CVD, Thin Solid Films 355-356, 134-138.

Hirabayashi K., Kurihara N.I.1991. Assignment of new facets developing on {111} surfaces of vapor-deposited diamond crystals, Jpn. J. Appl. Phys. 30 (1A), L49-L51.

May P.W. 2000. Diamond Thin Films: A 21st Century Material, Phil. Trans. R. Soc. Lond. A 358, 473-495.

Pickard C.D.O., Davis T.J., Wang W.N., Steeds J.W. 1998. Mapping crystalline quality in diamond films by micro-Raman spectroscopy, Diamond and Related Materials 7, 238-242.

Pollak F.H., Tsu R. 1983. In Raman Characterization of Semicoductors Revisited, SPIE Vol. 452 Spectroscopic Characterization Techniques for Semiconductor Technology, 26-43.

Proffitt S.S., Probert S.J., Whitfield M.D., Foord J.S., Jackman R.B. 1999. Growth of nanocrystalline diamond films for low field electron emission, Diamond and Related Materials 8, 768-771.

Sun F.H., Wang Y., Zhang Z.M., Chen M. 2006. Fabrication and application of diamond-coated bearing support implements, Key Engineering Materials 315-316, 210-214.

Venables J.D., Wernick J.H., Angus J.C., Bell P.M., Cuomo J.J., DeVries’ R.C., Feldman A., Geis M.W., Hoover D.S., Messier R. 1990. In Status and Applications of Diamond and Diamond-Like Materials: An Emerging Technology, The National Academy of Sciences, National Academy Press USA, 34.

Wang S.B., Zhang H.X., Zhu P., Feng K. 2000. Structural and electrical properties of chemical vapor deposited diamond films doped by B + implantation, J. Vac. Sci. Technol. B 18, 1997-2000.

Yan X., Xu T., Chen G., Yang S., Liu H., Xue Q. 2004. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, J. Phys. D: Appl. Phys. 37(6), 907-913.

Ye H., Sun C.Q., Hing P. 2000. Control of grain size and size effect on the dielectric constant of diamond films, J. Phys. D: Appl. Phys. 33, L148-L152.

Yoshitake T., Hara T., Nagayama K.. 2003. The influence of the repetition rate of laser pulses on the growth of diamond thin films by pulsed laser ablation of graphite, Diamond and Related Materials 12, 306-309.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales