OBTENTION OF SNO2, GAS SENSOR THROUGH CHEMICAL METHODS
PDF (Español (España))

How to Cite

Montenegro, A., Ponce, M., & Rodríguez–Páez, J. E. (2023). OBTENTION OF SNO2, GAS SENSOR THROUGH CHEMICAL METHODS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 31(120), 405–413. https://doi.org/10.18257/raccefyn.31(120).2007.2349

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work, SnO2 –Bi2O3 ceramic powders were synthesized through precipitation and polymeric precursor (Pechini) methods. Through these methods, high purity nanometric particles were obtained. Powders were characterized through Simultaneous Gravimetric and Differential Thermal Analyses (DTA/TG), X-Ray Diffraction (XRD), particle size distribution and Scanning Electron Microscopy (SEM). Then, employing the synthesized powders thick films were conformed and their electrical behavior was determined. Time response of the sensor electrical resistance when the atmosphere is changed from vacuum to oxygen or to carbon monoxide was registered. Also, the sensitivity and stability of the sensor were determined.

https://doi.org/10.18257/raccefyn.31(120).2007.2349

Keywords

Gas sensor | synthesis | SnO2 - Bi2O3 | precipitation | polymeric precursor
PDF (Español (España))

References

Adamian Z.N., Abovian HH.V., Aroutionian V.M. 1996. Smoke sensor on the base of Bi2O3 sesquioxide. Sens. Actuact; 35-36: 241-243.

Aroutionian V.M., Adamian Z.N., Abovian H.V., Movsessian K.R., Barsegyan A.A., Panossian M.S.1995. Method of Making Smoke Detector. US Patent; 5: 382-341.

Barsan N, Udo W. 2001. Conduction model of metal oxide gas sensors. J. Electroceram; 7: 143-167.

Bernardi M.I.B., Soledade L.E.2002. Influence of the concentrations of Sb2O3 and the viscosity of the precursor solution and the electrical and optical properties of SnO2 thin films produced by the Pechini method. Thin solid Films; 405: 228-233.

Delgado R. 2001. Sensores de gases basados en óxidos de estaño: una aproximación electroquímica. Tesis doctoral Universidad de Barcelona.

Devi G.S., Manorama S.V., Rao V.J. 1999. SnO2:Bi2O3 based CO sensor: Laser-Raman, temperature programmed desorption and X- ray photoelectron spectroscopic studies. Sens. Actuact; 56: 98-105.

Giuntini J. C, Granier W, Zanchetta J. V, Taha A. 1999. Sol-gel preparation and transport properties of a tin oxide. J. Mat. Sci. Lett; 9: 1383-1388.

Huamán F, Reyes L. 2001. Detección de vapor de etanol por modificación de la conductividad eléctrica del dióxido de estaño. TECNIA,Vol 8 N°01, Universidad Nacional de Ingeniería Lima – Perú.

Jarzebski J. M., Marton J. P, 1976. Physical properties of SnO2 materials-II. Electrical properties. J. Electrochem. Soc; 129: 299C-310C.

Lanciotti F., Pizani P. S, Soares P. C.2002. Synthesis of SnO2 nanoribbons by a carbothermal reduction process. J. Nanosci. Nanotechn; 2: 125-128.

Leite E. R., Gomes J. W, Oliveira M. M, Lee E. J. H, Longo E, Varela J. A, Paskocimas C. A., Boschi T. M, Liu F., Quan B., Chen L. 2004. Investigation on SnO2 nanopowders stored for different time and BaTiO3 modification. Mater. Chem. Phys; 87: 297-300.

Liu F., Quan B., Liu Z., Chen L. 2004. Investigation on SnO2 nanopowders stored for different time and BaTiO3 modification. Mat. Chem. Phys; 93: 301-304.

Liu F., Quan B., Liu Z., Chen L. 2005. Surface Characterization study on SnO2 powder modified by thiourea. Mater. Chem. Phys; 93: 301-304.

Madau M.J, Morrison R. 1989. Chemical sensing with solid state devices. academic Press, Inc., San Diego.

Ponce M. A. 2003. Preparación y evaluación de sensores de gases de SnO2. Pretesis de Doctorado en Ciencia de Materiales, Universidad Nacional de Mar del Plata.

Radecka M., Zakrzewska K., Rekas M. 1998. SnO2 – TiO2 solid solutions for gas sensors. Sens. Actuactors; 47: 194-204.

Savala G. D, Manorama S.V., Rao V.J. 1999. SnO2:Bi2O3 based CO sensor: Laser-Raman, temperatura programmed desorption and X-ray photoelectron spectroscopic studies. Sens. Actuat; 56: 98-105.

Sberveglieri G., Faglia G., Groppelli S., Nelli P. 1992. Methods for the preparation of NO, NO2, and H2 sensors based on tin oxide thin films, grown by means of the r.f. magnetron sputtering technique. Sens. Actuact; 8: 79-88.

Schweizer-Berberich M., Zheng T.G., Weimar U., et al, 1996. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sens. Actuact; 31: 71-75.

Serrini P, Briois V. 1997. Chemical composition and crystalline structure of SnO2 thin films used as gas sensor. Thin Solid Films; 304: 13-122.

Sze S.M. 1994. Semiconductors sensors. Nacional Chao Tung University, Ed. John Wiley.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0