Abstract
The main components of biomass are organic macromolecules: carbohydrates, lignin and proteins. The abundance of ether-like and ester bonds in their mesomeric units does them susceptible to be depolymerized and the usage of a hydrothermal atmosphere allows us to choose the predominant route: hydrolysis or dehydration, decarboxylation and scission of functional groups. In this review are compiled hydrothermal reaction pathways, specially polysaccharides and lignanes, these ones are the main molecules that contribute to chemical diversity and fuel properties in lignocellulosic biomass hydrothermal conversion products, due to the oxygen content reduction in these macromolecules and the inherent raise of heating value. The hydrophobic products from liquefaction and partial hydrothermal gasification of biomass components can be used as bio-fuel.
Keywords
References
Annee, J., Ruyter, H. “Process for producing hydrocarbon-containing liquids from biomass”. Patente europea EP 0204 354. Oficina Europea de Patentes. Diciembre 10 de 1986.
Antal, M., Carlsson, M., Xu, X. 1998. “Mechanism and kinetics of the acid-catalyzed dehydration of 1- and 2-propanol in hot compressed liquid water”. Industrial and Engineering Chemistry Research. 37(10): 3820-3829.
Annee, J., Ruyter, H. “Process for producing hydrocarbon-containing liquids from biomass”. Patente europea EP 0204 354. Oficina Europea de Patentes. Diciembre 10 de 1986.
Antal, M., Carlsson, M., Xu, X. 1998. “Mechanism and kinetics of the acid-catalyzed dehydration of 1- and 2-propanol in hot compressed liquid water”. Industrial and Engineering Chemistry Research. 37(10): 3820-3829.
limestone from the Ghareb Formation, Jordan”. Organic Geochemistry. 28 (7-8): 503-521.
Kruse, A., Gawlick, A. 2003. “Biomass Conversion in Water at 330-410°C and 30-50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways”. Industrial and Engineering Chemical Research. 42: 267-279.
Kruse, A., Gawlick, A., Henningsen, T. 2004. “Biomass liquefaction and gasification in near and supercritical water: key compounds as a tool to understand chemistry”. Documento. Institut für Technische Chemie CPV, Forschungzentrum Karlsruhe. Alemania.
Kuhlmann, B., Arnett, E., Siskin, M. 1994. “Classical Organic Reactions in Pure Superheated Water”. Journal of Organic Chemistry. 59: 3098-3101.
Kurita, K., Akao, H., Yang, J., Shimojoh, M. 2003. “Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches”. Biomacromolecules. 4: 1264-1268.
Landes, K. “Geología del petróleo”. 3ª Ed. Ediciones Omega. (1977) Barcelona, España. 463 p.
Lorant, F., Behar, F. 2002. “Late Generation of Methane from Mature Kerogens”. Energy & Fuels. 16 (2): 412-427.
Luijkx, G. 1993. “Hydrothermal conversion of carbohydrates and related compounds”. Tesis para aspirar al título de Doctor en Ingeniería Química, Universidad Tecnológica de Delft. Países Bajos (Holanda).
Mandoki, J. “Depolymerization of condensation polymers.” Patente norteamericana US 4,605,762. Oficina norteamericana de patentes, Agosto 12 de 1986.
Minowa, T., Zhen, F., Ogi, T. et al. 1997. “Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures. Journal of Chemical Engineering (Japón). 30: 186.
Miyazawa, T., Funazukuri, T. 2004. “Hydrothermal production of mono (galacturonic acid) and oligomers from poly (galacturonic acid) with water under pressures”. Industrial and Chemical Engineering Research. 43: 2310-2314.
Modell, M., Reid, R., Amin, S. “Gasification process”. Patente norteamericana US 4.113.446. Oficina norteamericana de Patentes y registros. Septiembre 12 de 1978.
Mok, W., Antal, M. 1992. “Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water”. Industrial and Engineering Chemistry Research. 31: 1157-1161.
Obenberger, P. “Proximal analýsis of biomass”. Version 2,4, © BIOS Bioenergiesysteme GmbH. Graz, Austria. Disponible en linea en www.biobioenergy.at
Peterson, A. “Studying the detailed chemistry of the hydrothermal reaction of glucose and glycine, which are model compounds for biomass, in a high-pressure and high-temperature environment”. Citado en “Curriculum vitae”. Disponible en web.mit.edu/aap/www/CV.
Piskorz, J. et al. 2000. “Flash pyrolysis of cellulose for production of anhydro-oligomers”. Journal of Analytical and Applied Pyrolysis. 56: 145-166.
Ponder, G., Richards, G., Stevenson, T. 1992. “Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans”. Journal of Analytical and Applied Pyrolysis. 22 (3): 217-229.
Quitain, A. et al. 2001. “Production of valuable materials by hydrothermal tratment of shrimp shells”. Industrial and Engineering Chemistry. 40:5885-5888.
Rouxhet, P., Robin, P. 1978. “Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis”, Fuel. 57 (9):533-540.
Saisu, M., Sato, T., Watanabe, M. et al . 2003. “Conversion of lignin with supercritical water-phenol mixtures”. Energy Fuels. 17: 922.
Sakai, K. 1998. “Function and Application of Chitin-Chitosan Oligomers” (Artículo en japonés). New Food Industries. 40:pp. 17. (Referenciado por Quitain, 2001).
Saleh, R., Siskin, M., Knudsen, G. “Process for depolymerization of butyl rubbers and halobutyl rubbers using hot liquid water”. Patente norteamericana US 5, 283, 318. Febrero 1 de 1994.
Sasaki, M. et al. 2002. “Kinetics and Mechanism of Cellobiose Hydrolysis and Retro-Aldol condensation in Subcritical and Supercritical Water”, Industrial and Engineering. Chemistry Research, 41: 6642-6649.
Sasaki, T. et al. 2002. “Saccharification of Cellulose Using a Hot-Compressed Water-Flow Reactor”. Industrial Engineering Chemical Research. 41:661-665.
Sato, N. et al. 2004. “Reaction kinetics of amino acid decomposition in hig-temperature and high-pressure water”. Industrial and Engineering Chemical Research, 43: 3217-3222.
Savage, P. 1999. “Organic Chemical Reactions in Supercritical Water”. Chemical reviews. 99: 603-621.
Savage, P. 1999. “Comunicación personal”. Ingeniero Químico, investigador del Departamento de Ingeniería Química de la Universidad de Michigan. Michigan, Estados Unidos de Norteamérica. (psavage@umich.edu), agosto de 2005.
Sawada, H. 1976. “Thermodinamics of polymerization”. Marcel Dekker. New York, Estados Unidos de América.
Schmieder, H. et al. 2000. “Hydrothermal gasification of biomass and organic wastes”. The Journal of Supercritical Fluids. 17:145-153.
Schobert, H. “The chemistry of hydrocarbon fuels”. Butterworth & Co (actualmente Elsevier Science ltd). Londres, Reino Unido. 1990. ISBN 0-408-03825-X
Schwarzinger, C. “Comunicación Personal”. Investigador del Instituto para Tecnología Química de Materiales Orgánicos, Universidad Johannes Kepler. Enero de 2005. Linz, Austria. (clemens.schwarzinger@jku.a)
Serikawa, R., Funazukuri, T., Wakao, N. 1992. “Oil conversion of vinasse with high density water”. Fuel. 71: 283-287.
Shaw, R. et al. 1991. Supercritical Water, a medium for chemistry. Chemical & Engineering News. 69 (51): 26-39.
Siskin, M., Katritzky, A., Balasubramanian R. 1995. “Aqueous organic chemistry. 9. Reactivity of 1,5-, 1,6-, 1,7- and 2,6-dihydroxynaphthalenes, dibenzofuran, 2-hydroxydiben-zofuran, carbazole, 2-hydroxycarbazole, acridine and 4-hydro-xyacridine”. Fuel. 74: 1509-1511.
Siskin, M., Katritzky, A. 2000. “A review of the reactivity of organic compounds with oxygen-containing functionality in superhea-ted water”. Journal of analytical and applied pyrolysis. 54:193-214.
Siskin, M. et al. “Aqueous Organic Chemistry. 3. Aquathermolysis: Reactivity of Ethers and Esters”. Energy & Fuels. 5: 1990, pp. 488-492.
Siskin, M. et al. 1990 a. “Aqueous Organic Chemistry. 2. Cross-Linked Cyclohexyl Phenyl Compounds”. Energy Fuels. 4: 482-488.
Siskin, M. et al. 1990 b. “Aqueous organic chemistry. 1. Aquathermolysis: Comparison with thermolysis in the reactivity of aliphatic compunds”. Energy & Fuels. 4: 475-482.
Srokol, Z. “Hydrothermal liquefaction of biomass: reaction paths and kinetics”. Tesis de doctorado en Ingeniería Química, Universidad Tecnológica de Delft. 2004. Países Bajos.
Stein, S. “Free radicals in coal conversion, Chemistry of coal conversion”, editado por Richard H. Schlosberg. Plenum Press. Nueva York, Estados Unidos de América. 1985.
Suárez, M. “Comunicación personal”. Bióloga, especialista en microbiología de organismos patógenos. Instituto de Ciencia y Tecnología de Alimentos. Universidad Nacional de Colombia. abril de 2005. Bogotá, Colombia.
Szabo, P., Minowa, T., Ogi, T. 1998. “Liquefaction of cellulose in hot compressed water using sodium carbonate. Part 2: Thermogravimetric mass spectrometric study of the solid residues”. Journal of Chemical Engineering (Japón). 31: 571.
Veringa, H. “Advanced Techniques for generation of energy from biomass and waste”. Document ECN-Biomass. Países Bajos (Holanda). Octubre de 2004.
Vivas N., Nonier M-F., Pianet I., Vivas de Gaulejac N., Fouquet È. 2006. Structure of extracted lignins from oak heartwoo (Quercus petraea Liebl., Q. Robur L.); Comptes Rendus Chimie; 9: 1221-1233.
Yan, Y., Xu, J., Li, T. et al. 1999. “Liquefaction of sawdust for liquid fuel”. Fuel Processing Technology. 60: 135–143.
Zhong, C., Peters, C., De Swaan Arons, J. 2002. “Thermodynamic modeling of biomass conversion processes”. Fluid Phase Equilibria. 194-197:805-815.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales