NON-GAUSSIANITY AND LOOP CORRECTIONS IN A QUADRATIC TWO-FIELD SLOW-ROLL MODEL OF INFLATION. PART 11
PDF

How to Cite

Cogollo, H. R. S., Rodríguez, Y., & Valenzuela-Toledo, C. A. (2023). NON-GAUSSIANITY AND LOOP CORRECTIONS IN A QUADRATIC TWO-FIELD SLOW-ROLL MODEL OF INFLATION. PART 11. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 32(125), 515–526. https://doi.org/10.18257/raccefyn.32(125).2008.2339

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We calculate the trispectrum Tζ (k1 , k2 , k3, k4) of the primordial curvature perturbation ζ, gener­ated during a slow-roll inflationary epoch and considering a quadratic two-component scalar potential and canonical kinetic terms. We consider one-loop and tree leve] contlibutions, and show that it is pos­sible to attain observable values for the leve! of non-gaussianity T N L, if Tζ; is dominated by the one-loop contlibution. This work is performed by taking into account that there exists sorne physical restrictions that constrain the available parameter window. Such conditions are: thc existence of sorne coupling constants that guarantee the calculation in a perturbative regime, the relative weight of the one-loop and tree leve! contributions, the normalisation of the spectrum, the observed spectral index, and the mini mal amount of inflation required to solve the horizon problem.

https://doi.org/10.18257/raccefyn.32(125).2008.2339

Keywords

primordial curvature perturbation | non-gaussianity | slow-roll inflationary models.
PDF

References

Maldacena J., 2003. Non-gaussian features of primordial fluctua­tions in single field inflationary models. JHEP 0305, 013. Okamoto T. & Hu W., 2002. Angular trispectra of CMB tempera­ture and polarization. Phys. Rev. D 66, 063008.

The PLANCK Collaboration, 2006. The scientific programme of Planck. arXiv:astro-ph/0604069.

Rigopoulos G., Shellard E.P.S., & van Tent B.J.W., 2007. Quan­titative bispectra from multifield inflation. Phys. Rev. D 76, 083512.

Rodríguez Y., 2008. Non-gaussianity and loop corrections in a quadratic two-field slow-roll model of inflation. Part I. Submitted to Rev. Acad. Colomb. Cienc.

Sasaki M. & Stewart E.O., 1996. A general analytic formula for the spectral index of the density perturbations produced during in­flation. Prog. Theor. Phys. 95, 71.

Seery O. & Lidsey J.E., 2007. Non-gaussianity from the inflation­ary trispectrum. JCAP 0701, 008.

Seery O., Sloth M., & Vernizzi F., 2008. Inflationary trispectrum from graviton exchange. arXiv: 0811. 3934 [astro-ph].

Starobinsky A.A., 1985. Multicomponent de Sitter (inflationary) stages and the generation of perturbations. Pisma Zh. Eksp. Teor. Fiz. 42, 124. [JETP Lett. 42, 152].

Vaihkonen A., 2005. Comment on non-gaussianity in hybrid infla­tion. arXiv:astro-ph/0506304.

Vernizzi F. & Wands O., 2006. Non-gaussianities in two-field in­flation. JCAP 0605, 019.

Weinberg S., 2008. Cosmology, Oxford University Press, Oxford UK.

Yadav A.P.S. & Wandelt B.O., 2008. Evidence of primordial non­gaussianity (f N L) in the Wilkinson Microwave Anisotropy Probe 3-year data at2.8a. Phys. Rev. Lett.100, 181301.

Yokoyama S., Suyama T., & Tanaka T., 2008. Primordial non­gaussianity in multi-scalar inflation. Phys. Rev. D 77, 083511. Zaballa l., Rodríguez, Y., & Lyth O.H., 2006. Higher order con­tributions to the primordial non-gaussianity. JCAP 0606, 013.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales