Abstract
We calculate the trispectrum Tζ (k1 , k2 , k3, k4) of the primordial curvature perturbation ζ, generated during a slow-roll inflationary epoch and considering a quadratic two-component scalar potential and canonical kinetic terms. We consider one-loop and tree leve] contlibutions, and show that it is possible to attain observable values for the leve! of non-gaussianity T N L, if Tζ; is dominated by the one-loop contlibution. This work is performed by taking into account that there exists sorne physical restrictions that constrain the available parameter window. Such conditions are: thc existence of sorne coupling constants that guarantee the calculation in a perturbative regime, the relative weight of the one-loop and tree leve! contributions, the normalisation of the spectrum, the observed spectral index, and the mini mal amount of inflation required to solve the horizon problem.
References
Maldacena J., 2003. Non-gaussian features of primordial fluctuations in single field inflationary models. JHEP 0305, 013. Okamoto T. & Hu W., 2002. Angular trispectra of CMB temperature and polarization. Phys. Rev. D 66, 063008.
The PLANCK Collaboration, 2006. The scientific programme of Planck. arXiv:astro-ph/0604069.
Rigopoulos G., Shellard E.P.S., & van Tent B.J.W., 2007. Quantitative bispectra from multifield inflation. Phys. Rev. D 76, 083512.
Rodríguez Y., 2008. Non-gaussianity and loop corrections in a quadratic two-field slow-roll model of inflation. Part I. Submitted to Rev. Acad. Colomb. Cienc.
Sasaki M. & Stewart E.O., 1996. A general analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys. 95, 71.
Seery O. & Lidsey J.E., 2007. Non-gaussianity from the inflationary trispectrum. JCAP 0701, 008.
Seery O., Sloth M., & Vernizzi F., 2008. Inflationary trispectrum from graviton exchange. arXiv: 0811. 3934 [astro-ph].
Starobinsky A.A., 1985. Multicomponent de Sitter (inflationary) stages and the generation of perturbations. Pisma Zh. Eksp. Teor. Fiz. 42, 124. [JETP Lett. 42, 152].
Vaihkonen A., 2005. Comment on non-gaussianity in hybrid inflation. arXiv:astro-ph/0506304.
Vernizzi F. & Wands O., 2006. Non-gaussianities in two-field inflation. JCAP 0605, 019.
Weinberg S., 2008. Cosmology, Oxford University Press, Oxford UK.
Yadav A.P.S. & Wandelt B.O., 2008. Evidence of primordial nongaussianity (f N L) in the Wilkinson Microwave Anisotropy Probe 3-year data at2.8a. Phys. Rev. Lett.100, 181301.
Yokoyama S., Suyama T., & Tanaka T., 2008. Primordial nongaussianity in multi-scalar inflation. Phys. Rev. D 77, 083511. Zaballa l., Rodríguez, Y., & Lyth O.H., 2006. Higher order contributions to the primordial non-gaussianity. JCAP 0606, 013.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales