Abstract
A linear functional is said to be weakly-regular if it is not a finite sum of Dirac masses and their derivatives. In this paper, we consider the first-order linear differential equations (Eu)'+Fu=0 where u is a non-zero linear functional and (E,F) is a pair of polynomials, with E monic. The aim of this work is to give weak-regularity conditions on u. Under certain admissibility conditions of the pair (E, F), the weak-regularity of u leads to its regularity. Some examples are analyzed.
Keywords
References
M. Bachene, Les polynómes semi-classiques de classe zéro et de classe un. Thèse de troisième cycle, Université Pierre et Marie Curie, Paris, 1986.
S. Belmehdi, Formes linéaires et polynômes orthogonaux semi-classiques de classe s = 1. Description et classification. Thèse d'État, Université Pierre et Marie Curie, Paris, 1990.
S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736.
T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
J. L. Geronimus, On polynomials with respect to numerical sequences and on Hahn's theorem, Izv. Akad. Nauk. 4 (1940), 215-228 (in Russian).
E. Hendriksen & H. Van Rossum, Semiclassical orthogonal polynomials. In Polynômes Orthogonaux et Applications, Bar-le-Duc, 1984. C. Brezinski et al. Editors. Lecture Notes in Math., Vol. 1171, Springer-Verlag, Berlin (1985), 354-361.
P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semiclassiques. In Orthogonal Polynomials and their applications. Proc. Erice. (1990). C. Brezinski et al., Editors. Ann. Comp. Appl. Math., 9 (1991), 95-130.
P. Maroni, Variations around classical orthogonal polynomials. Connected problems. J. Comp. Appl. Math. 48 (1993), 133-155.
P. Maroni, Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de l'Ingénieur, A 154 (1994), 1-30.
J. Shohat, A differential equation far orthogonal polynomials. Duke Math. J. 5 (1939), 401-417.
V. B. Uvarov, The connection between systems of polynomials orthogonal with respect to different distribution functions. USSR Comput. Math. Phys. (6) 9 (1969), 25-36.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0