Abstract
Glycolysis is an alternative means that cells have to get energy for digestion and biochemical synthesis, for maintaining concentration gradients, for muscular contractions and cell division, and for maintaining body heat, and is a way to make the high-energy pyrophosphate bond of ATP. Most cells fall back on Glycolysis only when they have no better biological alternative. Glycolysis in the cytoplasm of yeast cells and in the cell-free extracts of yeast is one of the three biochemical oscillators discovered. Though not Glycolysis, Selkov proposed a single enzyme oscillator built around PFK enzyme and the ADP-ATP couple to account for many of the facts of oscillating Glycolysis. Metabolism rhythms observed in Glycolysis seemed at first to offer the experimental biochemist a particularly favorable opportunity to study regulation. A few irreversible thermodynamics studies on Selkov model and reaction-diffusion Selkov scheme had been done. Our goal is to show in this paper a study on temperature as a dynamic parameter in the reaction-diffusion Selkov model, for that purpose we have used the extended generalized thermodynamics for irreversible processes in order to quantify the levels of energy-matter dissipation under isothermal and non-isothermal environments. The results show that temperature has a dynamic and thermodynamic control on the dissipative structures and on the level of associated thermodynamic dissipation. The irreversible thermodynamics itself is a valuable tool to understand the macroscopic phenomena and the results obtained in studies of nonlinear dynamics.
Keywords
References
(1) Berg, J.M., Tymoczcko, J. L., Stryer, L., 2002. Biochemistry, Fifth Edition, W. H. Freeman and Company, New York,
(2) Albers, E., Bakker, B. M., Gustafsson, L., 2002. Modeling response of glycolysis in S. Cerevisiae cells harvested at diauxic shift., Molecular Biology Reports, 29, 119-123.
(3) Winfree, A. T., The Geometry of Biological Time, Springer-Verlag, NY, 1980.
(4) Drong, K., Lamprecht, I., Plesser, Th., 1989. Calorimetric measurements of an intermittency phenomenon in oscillating glycolysis in cell-free extracts from yeast, Thermochimica Acta, 151, 69-81.
(5) Grospietch, T., Drong, K., Lamprecht, I., 1995. Experimental data on the energetic flux during glycolytic oscillations in yeast extracts, Experientia, 51, 117-120.
(6) Lamprecht, I., 1999. Microcalorimetric investigations of oscillating reactions, Indian Journal of Technology, 30: 578-592.
(7) Field, R. J., Gyorgyi, L., 1993. Editors. Chaos in Chemistry and Biochemistry, World Scientific, Singapore.
(8) Showalter, K., Tyson, J., 1987. Luther’s 1906 discovery and analysis of chemical Waves, J. Chem. Educ. 64, 9.
(9) Vives, D., Armero, J., Martí, A., Ramírez-Piscina, L., Sagués, F., 1998. Propagating fronts in reaction-diffusion system, J. Math. Chem. 23, 239-260.
(10) Strogatz, S. H., 1994. Nonlinear Dynamics and Chaos, Addison-Wesley.
(11) Kaplan, D., Glass, L., 1995. Understanding Nonlinear Dynamics, Springer-Verlag.
(12) Zill, D. G., 1997. Ecuaciones Diferenciales con Aplicaciones, Tercera Edición, Grupo Editorial Iberoamérica.
(13) Katchalsky, A., Curran, P. F., 1967. Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Massachusetts.
(14) Babloyantz, A., 1986. Molecules, Dynamics, and Life: An Introduction to Self-Organization of Matter, John-Wiley.
(15) Jou, D., Llebot, J. E., 1989. Introducción a la Termodinámica de los Procesos Biológicos, Editorial Labor, Barcelona.
(16) (a) Nicolis, G., Prigogine, I., 1952. Self-Organization in Nonequilibrium Systems: From Dissipative Structure to Order Through Fluctuations, John Wiley, 1977., (b) Turing, A. The Chemical Basis of Morphogenesis, Phil. Trans. Roy. Soc. London, Series B. 237 (641), 1-37.
(17) Glansdorff, P., Prigogine, I., 1971. Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience.
(18) Barragán, D., Gómez, A., 2004. Calortropía, Autoorganización y Evolución, Rev. Acad. Colomb. Cienc., 28 (108), 349-361.
(19) (a) Eu, Byung Chan. 1999. Generalized Thermodynamics: The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics, Kluwer Academic Publishers, 2002., (b) Eu, B. C., Generalized Thermodynamics of Global Irreversible Processes in a Finite Macroscopic System. J. Phys. Chem. B., 103 (40), 8583-8594.
(20) (a) Britton, N. F., Reaction-Diffusion Equations and Their Applications to Biology, Academic Press, 1986., (b) Fischer, R. A. 1937. The Wave of Advance of Advantageous Genes, Annals of Eugenics, 1937, 7, 355-369., (c) Kolmogorov, A. N., Petrovsky, I. G., Piskunov, N. S., Etude de l’equation de la diffusion avec croissance de la quantit de matire et son application un problem biologique, Bulletin Universit d’Etat Moscou, Serie Internationale A. 1, 1-26.
(21) Fife, P. C., 1976. Asymptotic States for Equations of Reaction and Diffusion, J. Chem. Phys. 64 (2), 554-564.
(22) Maini, P. K., Painter, K. J., Chau, H, P. 1997. Spatial pattern formation in chemical and biological systems, J. Chem. Soc., Faraday Transac., 93(20), 3601-3610.
(23) Vives, D., Careta, A., Sagués, F., 1997. Propagating fronts in chemical systems with coexisting multiple stationary states, J. Chem. Phys. 107, 7894.
(24) Zhdanov, V. P., 2000. Model of oscillatory patterns in cells: Autocatalysis and transport via the cell membrane, PCCP, 2, 5268-5270.
(25) Kalliadasis, S., Merkin, J. H., Scott, S. K. 2000. Flow-distributed oscillation patterns in the oregonator model, PCCP, 2, 2319-2327.
(26) Kiss, Z., Merkin, J. H., Scott, S. K., Simon, L., 2003. Travelling waves in the oregonator model for the BZ reaction, PCCP 5, 5448-5453.
(27) Lavenda, B. H., 1978. Thermodynamics of Irreversible Processes, Dover, NewYork.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0