Abstract
In this paper, we establish the local well-posedness for the nonlinear generalized Schrödinger equation in the Sobolev spaces Hs(R), with s > 1/2. Also, we obtain global well-posedness in Hs(R) for s = 1, 2. In addition, a blow-up result is established if the initial data belongs to F1 (R) = H1 (R) ∩ L21 (R).
Keywords
References
J. Bourgain & W. Wang. Construction of blowup solutions for the nonlinear Schrödinger equation with critical Nonlinearity, Ann. Scuola Norm. Pisa Cl. Sci. 25 (4) (1997), 197–215.
T. Cazenave. An introduction to nonlinear Schrödinger equations. Tercera edición. Instituto de Matematica–UFRJ, 1996.
T.Cazenave & F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Analysis Theory and Applications 14 (10) (1990), 807–836.
T. Davydova & Y. Zaliznyak. Schrödinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity, Physica D 156 (2001) 260–282.
J. Duoandikoetxea. Análisis de Fourier, Addison Wesley/Universidad Autónoma de Madrid, Madrid, 1995.
O. Duque. El problema de Cauchy asociado a una ecuación no lineal generalizada de Schrödinger, Tesis de maestría, Universidad Nacional de Colombia, Bogotá 2005.
G. Folland. Introduction to Partial Differential Equations, Princeton University Press/University of Tokyo Press, Princeton, New Jersey, 1976.
J. Ginibre & G. Velo. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32 (1979), 1–32.
J. Ginibre & G. Velo. G. On a class of nonlinear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal. 32 (1979), 33-71.
R. Glassey. On the blowing up of solutions to the Caychy Problem for nonlinear Schrödinger equations. J. Math. Phys. 18 (9) (1997), 1794–1797.
R. Iório, Jr. & V. Iório. Fourier Analysis and Partial Differential Equations, Cambridge University Press, Cambridge, 2001.
C. Kenig, G. Ponce & L. Vega. On the IVP for the nonlinear Schrödinger equations. American Mathematical Society. Contemp. Math. 189 (1995), 353-367.
G. Ponce. Introducción a las ecuaciones en derivadas parciales de evolución. I Escuela de Verano en Geometría Diferencial, Ecuaciones Diferenciales Parciales y Análisis Numérico. Universidad del Valle, Cali (Colombia), 1993.
G. Ponce & F. Linares. Introduction to Nonlinear Dispersive Equations. Prepublication, 2003.
C. Sulem & P. Sulem. The nonlinear Schrödinger equation. Applied Mathematical Sciences 139, Springer-Verlag, New York, 1999.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0