INVERSE FINITE-TYPE RELATIONS BETWEEN SEQUENCES OF POLYNOMIALS
PDF

How to Cite

Marcellán, F., & Sfaxi, R. (2023). INVERSE FINITE-TYPE RELATIONS BETWEEN SEQUENCES OF POLYNOMIALS . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 32(123), 245–255. https://doi.org/10.18257/raccefyn.32(123).2008.2256

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Let φ be a monic polynomial, with deg φ = t ≥ 0. We say that there is a finite-type relation between two monic polynomial sequences {Bn}n≥20 and {Qn}n0 with respect to φ if there exists (s,r) Є N2 , r ≥ s, such that.

where degΩ*s (x;n)=s,n≥t. When the orthogonality of the two previous sequences is assumed, the inverse finite-type relation is always possible (11]. This work essentially studies
the case when only the sequence {Bn }n20 is orthogonal. In fact, we find necessary and sufficient conditions leading to inverse finite-type relations. In particular, the structure relation characterizing semi-classical sequences is a special case of the general situation. Sorne examples will be analyzed.

https://doi.org/10.18257/raccefyn.32(123).2008.2256

Keywords

Finite-type relations | recurrence relations | orthogonal polynomials | semi­classical polynomials
PDF

References

M. Alfaro, F. Marcellán, A. Peña & M. L. Rezola, On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl. 287 (2003), 307-319.

M. Alfaro, F. Marcellán, A. Peña & M. L. Rezola, On rational transformations o/ linear functionals. A direct problem, J. Math. Anal. Appl. 298 (2004), 171-183.

A. Cachafeiro, F. Marcellán & J. J. Moreno-Balcázar, on asymptotic properties of Preud-Sobolev orthogonal poly­nomials, J. Approx. Theory 125 (2003), 26-41.

T. S. Chihara, "An Introduction to Orthogonal Polynomi­ als", Gordon and Breach, New York, 1978.

A. M. Delgado & F. Marcellán. Companion linear funcionals and Sobolev inner products: a case study, Meth. Appl. Anal. 11 (2004), 237-266.

J F. Marcellán, M. Alfara & M. L. Rezola, Orthogonal polynomial8 on Sobolev spaces: Old and new directions, J. Comput. Appl. Math. 48 (1993), 113-131.

F. Marcellán & J. C. Petronilho, Orthogonal polynomials and coherent pairs: The classirol ca.se, lndag. Math. (NS), 6 (1995), 287-307.

F. Marcellán, T. E. Pérez & M. A. Piñar, Orthogo­nal polynomials on weighted Sobolev spaces: the semiclassical case, Ann. Numer. Math. 2 (1995), 93-122.

F. Marcellán & J. C. Medem, Q-Classical orthogonal polynomials: a very classirol approch, Elect. 'Irans. on N u­mer. Anal. 9 (1999), 112-127.

(11] P. Maroni, Fonctions eulériennes. Polynómes orthogonaux classiques. In Techniques de l'ingénieur, A 154 (1994),1-30.

P. Maroni, Semi-classical character and finite-type rela­tions between polynomial sequences. J. Appl. Num. Math. 31 (1999), 295-330.

P. Maroni & R. Sfaxi, Diagonal orthogonal polynomial sequences, Meth. Appl. Anal. 7 (2000), 769-792.

H. G. Meijer, Determination o/ all Coherent Pairs. J. Ap­prox. Theory, 89 (1997), 321-343.

P. Nevai, Orthogonal Polynomials associated with exp(-x4 ). Proc. Canad. Math. Soc. 3 (1983). 263-285.

P. Maroni, Un exemple d 'une suite orthogonal semi­classique de classe un. In Publ. Labo. d'Analyse Numérique, Université Pierre et Marie Curie, Paris. 89033 {1989).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales