SIMULTANEOUS CATALYTIC ADSORPTION OF NO AND SO, OVER ACTIVATED CARBONS
PDF (Español (España))

How to Cite

López , D., Buitrago, R., & Mondragón, F. (2023). SIMULTANEOUS CATALYTIC ADSORPTION OF NO AND SO, OVER ACTIVATED CARBONS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 32(122), 67–78. https://doi.org/10.18257/raccefyn.32(122).2008.2231

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Métricas Alternativas


Dimensions

Abstract

Simultaneous adsorption of NO and SO 2 on activated carbon provides an adequate alternative to control the low concentration emissions of these air pollutants. The adsorption of NO and SO 2 at 30ºC was followed by a quadrupole mass spectrometer and a NO X chemiluminescence analyzer and the surface complexes formed during the adsorption were studied by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). The effect of the addition of copper supported on the carbon and O 2 on the gas stream were studied. The oxygen presented a catalytic effect on the adsorption of these gases. In the simultaneous adsorption of NO and SO 2 , SO 2 inhibited the adsorption of NO, while SO 2 adsorption was notably improved. The reaction carried out under a NO/SO 2 /O 2 gas mixture showed a synergic effect by increasing the adsorption of both gases. The addition of copper catalyzed the oxygen transfer to the carbon matrix.

https://doi.org/10.18257/raccefyn.32(122).2008.2231

Keywords

activated carbons | air pollutants | catalyst | adsorption
PDF (Español (España))

References

Agency, U. S. E. P. (2006). U.S. Environmental Protection Agency. www.epa.gov

Bagreev, A., S. Bashkova and T. J. Bandosz. (2002). Adsorption of SO 2 on activated carbons: the effect of nitrogen functionality and pore sizes. Langmuir 18: 1257-1264.

Bishop, M. and D. L. Ward (1958). The direct determination of mineral matter in coal. Fuel 37: 191-199.

Boardman, R. D. and D. L. Smoot (1993). Fundamentals of coal combustion for clean and efficient use. Amsterdam, Elsevier Science Publishers.

Das, A. K., G. B. Marin, D. Constales and G. S. Yablonsky (2002). Effect of surface nonuniformity on the kinetics of simultaneous adsorption of SO 2–NO x over Na–g-Al 2 O 3 sorbent: a coverage-dependent stoichiometry. Chemical Engineering Science 57:1909-1922.

Davini, P. (1993). Adsorption and desorption of sulphur dioxide from simulated flue gas on active carbon: The effect of the ash content. Carbon 31(1): 47-51.

Davini, P. (2001). The effect of certain metallic derivates on the adsorption of sulphur dioxide on active carbon. Carbon 39:419-424.

Davini, P. (2001). SO 2 and NO x adsorption properties of activated carbons obtained from a pitch containing iron derivatives. Carbon 39:2173-2179.

Farrauto, R. J. and C. H. Bartholomew (1997). Fundamentals of industrial catlytic processes. London, Blakie Academic & Professional.

Galtayries, A., C. Cousi, S. Zanna and P. Marcus (2004). SO 2 adsorption at room temperature on Ni(111) surface studied by XPS. Surface and Interface Analysis 36(8): 997-1000.

García, P., F. Coloma, C. S. M. d. Lecea and F. Mondragón (2002). Nitrogen complexes formation during NO–C reaction at low temperature in presence of O 2 and H 2 O. Fuel Processing Technology 77-78: 255-259.

García, P., J. F. Espinal, C. S. M. d. Lecea and F. Mondragón (2004). Experimental characterization and molecular simulation of nitrogen complexes formed upon NO–char reaction at 270 o C in the presence of H 2 O and O 2 . Carbon 42:1507-1515.

Gilot, P., M. Guyon and B. R. Stanmore (1997). A review of NOx reduction on zeolitic catalysts under diesel exhaust conditions. Fuel 76(6): 507-515.

Hong, I., H. Jiang, Y.-D. Park, J.-Y. Kim and B.-H. Ha (2002). Metal dispersed activated carbon fibers and their application for removal of SOx. Chemical Physics Letters 366: 572-577.

Izquierdo, M. T., B. Rubio, M. J. Lázaro and R. Moliner. (2001). Eliminacion de SO 2 y NOx mediante catalizadores carbonosos procedentes de carbones de bajo rango. Instituto de Carboquímica (CSIC). 97-102.

Jackson, G. J., S. M. Driver, D. P. Woodruff, N. Abrams, R. G. Jones, M. T. Butterfield, M. D. Crapper, B. C. C. Cowie and V. Formoso (2000). A structural study of the interaction of SO 2 with Cu(111). Surface Science 459: 234-244.

Kikuyama, S., A. Miura, R. Kikuchi, T. Takeguchi and K. Eguchi (2004). SOx sorption-desorption characteristics by ZrO 2 -based mixed oxides. Applied Catalysis 259: 191-197.

Krijnsen, H. (2000). Advanced Control of NOx. Chemistry. Delf, Delf University: 189-192.

Li, X. and V. E. Henrich (1993). Reaction of SO 2 with stoichiometric and defective NiO(100) surfaces. Physical Review B 48(23):17486-17492.

Lizzio, A. A. and J. A. DeBarr (1996). Effect of surface area and chemisorbed oxygen on the SO 2 adsorption capacity of activated char. Fuel 75(13): 1515-1522.

Lu, H., E. Janin, M. E. Dávila, C. M. Pradier and M. Giithelid (1998). Adsorption of SO 2 , on Cu(100) and Cu(lOO)-c(2 x 2)-O surfaces studied with photoelectron spectroscopy. Vacuum 49(3): 171-174.

Ma, J., Z. Liu, S. Liu and Z. Zhu (2003). A regenerable Fe/AC desulfurizer for SO 2 adsorption at low temperatures. Applied Catalysis B: Environmental 45: 301-309.

Mochida, I., S. Kawano, S. Kisamori, H. Fujitsu and T. Maeda (1994). Reduction of low concentration NO with NH 3 over pitch based active carbon fiber in humid air at ambient temperature. Carbon 32(1): 175-177.

Mochida, I., Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa and A. Yasutake (2000). Removal of SOx and NOx over activated carbon fibers. Carbon 38: 227-239.

Pârvulescu, V. I., S. Boghosian, V. Pârvulescu, S. M. Jung and P. Grange (2003). Selective catalytic reduction of NO with NH 3 over mesoporous V 2 O 5–TiO 2–SiO 2 catalysts. Catalysis 217(1): 172-185.

Py, X., C. Roizard and N. Midoux (1995). Kinetics of sulfur dioxide oxidation in slurries of activated carbon and concentrated sulfuric acid. Chemical Engineering Science 50(13): 2069-2079.

Qiang, T., Z. Zhigang, Z. Wenpei and C. Zidong (2005). SO 2 and NO selective adsorption properties of coal-based activated carbons. Fuel 84: 461-465.

Radovic, L. R. and F. Rodriguez-Reinoso (1997). Chem. Phys. Carbon. 25: 243.

Raymundo, E. P., D. C. Amorós and A. L. Solano (2001). Temperature Progammed desorption study on the mechanism of SO 2 oxidation by activated carbon and activated carbon fibres. Carbon 39: 231-242.

Rodriguez, J. A., P. Liu, J. Dvorak, T. Jirsak, J. Gomes, Y. Takahashi and K. Nakamura (2003). Adsorption and decomposition of SO 2 on TiC(0 0 1): An experimental and theoretical study. Surface Science 543: L675–L682.

Rubel, A. M. and J. M. Stencel (1997). The effect of low concentration SO 2 on the adsorption of NO from gas over activated carbon. Fuel 76: 521-526.

Sellers, H. and E. Shustorovich (1996). Chemistry of sulfur oxides on transition metal surfaces: a bond order conservation-Morse potential modeling perspective. Surface Science 356 (1996)209-221 356: 209-221.

Shirahma, N., S. H. Moon, K. H. Choi, T. Enjoji, S. Kawano and Y. Korai (2002). Mechanistic study on adsorption and reduction of NO 2 over activated carbon fibers. Carbon 40:2605-2611.

Suzuki, T., T. Kyotani and A. Tomita (1994). Study on the Carbon Nitric Oxide Reaction in the Presence of Oxygen. Ind. Eng. Chem. Res 33(11): 2840-2845.

Tomita, A. (2001). Suppression of nitrogen oxides emission by carbonaceous reductants. Fuel Processing Technology 71: 53-70.

Tseng, H.-H. and M.-Y. Wey (2004). Study of SO 2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts. Carbon 42: 2269–2278.

Tseng, H.-H., M.-Y. Wey and C.-H. Fu (2003). Carbon materials as catalyst supports for SO 2 oxidation: catalytic activity of CuO–AC. Carbon 41: 139-149.

Wilde, J. D. and G. B. Marin (2000). Investigation of simultaneous adsorption of SO 2 and NO x on Na-g-alumina with transient techniques. Catalysis Today 62: 319-328.

Zhang, W., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto (1992). Adsorption-desorption Properties of Nitrogen Monoxide on Metal Ion-exchanged Zeolites. Chemistry Letters 21(5): 851.

Zhang, W., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto (1993). Removal of nitrogen monoxide on copper ion exchanged zeolites by pressure swing adsorption. Langmuir 9:2337-2332.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales