CHEMICAL ALTERATION OF MATRIX FRAGMENTS AND VOLCANIC GLASS IN THE ANDEAN SOILS AND PALEOSOILS OF THE NORTHERN COLOMBIAN CORDILLERA CENTRAL
PDF (Español (España))

How to Cite

M.T. , F. M., Zapata, R., Malagón, D., & Madriñán, R. (2023). CHEMICAL ALTERATION OF MATRIX FRAGMENTS AND VOLCANIC GLASS IN THE ANDEAN SOILS AND PALEOSOILS OF THE NORTHERN COLOMBIAN CORDILLERA CENTRAL. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 30(114), 47 – 66. https://doi.org/10.18257/raccefyn.30(114).2006.2214

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The results found in this research evidence a different weathering susceptibility of three volcanic ash components in the Andean soils and paleosoils of the Colombian Central Mountain Range. The matrix fragments (FM), the colored volcanic glasses (VVC), and the colorless volcanic glasses (VVI) components were subjected to solution in humic acid (AH), acid water (AA), and oxalic acid (AO) for 625 days. At the end of this period, it was found that the FM components are the most susceptible to chemical weathering due to their larger specific surface, reaction surface, more alteration features, and greater quantities of Al3+, Si4+, and Fe3+ ions. They were followed by the VVC and then the VVI.

During the time of experimental dissolution (625 days), the largest dissolution takes place at a pH range of 6.0-7.2. The AH is the most powerful of the three reagents, depending on the cycle it will be followed either by the AA or the AO: during the first and third cycles the relationship is AH>AA>AO, in the second one is AH >> AO>AA.

During the component dissolution, most of the experimental values took place in the Imogolite stability field. When the H4SiO4 activity and the pH were diminished, the formation of Gibsite could occur, and the system was acidified. If the H4SiO4 activity diminishes and the Al3+ one increases, some values shifted towards the Haloisite activity theoretical values. When the activity of the H4SiO4 increases and the Al3+ diminishes, the values came closer to the Imogolite activity theoretical values; this last mineral exhibits the smallest activity relationship, therefore it is the most stable, less dissolved and with the smaller free energy. The reagents used have a particular effect on the speed of the FM, VVC and VVI dissolution rates and on the Al3+, Si4+ and Fe3+ ion production. In the three cycles, the Al3+ and Si4+ ion production was higher in the FM component followed by the VVC and by the VVI. The production speed of Fe3+ is higher in the VVI and in the VVC than in the FM component.

https://doi.org/10.18257/raccefyn.30(114).2006.2214

Keywords

Volcanic ash | matrix fragments | volcanic glass | aluminium | silicon | iron
PDF (Español (España))

References

Alcalá de J.M., C.A. Ortiz & C.C. Gutiérrez, 2001. Clasificación de los suelos de la meseta Tarasca, Michoacán, México. En: Internet: www.chapingo.mx/terra.art227-239.pdf

Alexander A. J. & W. Dreybrodt., 2002. Dissolution rates of minerals and their relation to surface morphology. In: Geochimica et Cosmochimica Acta, 66(17): 3055-3062, 2002.

Berrío, A. 1997. Secuencia de meteorización química en un Andisol del Oriente Antioqueño. Trabajo de Grado, Ingeniero Químico. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales. 115 pp.

Berrío, A. & R. Zapata, 2001. Estudio de la Secuencia de Meteorización Química de un Andisol. II Saturación relativa en equilibrio de disolución. Revista ICNE. Univ. Nacional, Medellín.

Besoain, M. E., 1969. Imogolite in volcanic Soil of Chile. In: Geoderma 2(2): 151-169.

Besoain, M. E. 1972. Mineralogía de las arcillas de los suelos derivados de ceniza volcánica. En: Panel sobre suelos derivados de cenizas volcánicas de América Latina; Turrialba, Costa Rica, 6-13 de Junio, p B1.1-B1.13.

Besoain, M. E. P., M. Peralta & M. S. Massaro, 2002. Mineralogía y génesis de algunos suelos de cenizas volcánicas de Chiloé Continental, Chile. Agric. Tec. 60(2): 127-153. http://www.scielo.cl/scielo.php

Birkeland, P. W., 1974. Pedology, weathering and geomorphological research. Oxford University Press, New York.

Birkeland, P. W., 1974. 1980. Weathering and Geomorphology Research. Oxford University Press Inc. New York. 285 pp.

Bleeker, P. & R. L. Parfitt, 1974. Volcanic ash and its clay mineralogy at Cape Hoskins, New Britain, Papua New Guinea. Geoderma 11: 123-135.

Branauer, D. G.; P. H. Emmett & E. Teller, 1938. Adsorption of gases in multimolecular layer. In: Journal of the American Chemical Society. 60: 309-319.

Dahlgren, R. A., et al., 1991. Soil-forming processes in Alic Melanudands under Japanese pampas grass and oak. In: Soil Science Society of American Journal. 55 (1991): 1049-1056.

Dahlgren, R. A., F. C. Ugolini, & W. H. Casey, 1999. Field weathering rates of Mt St. Helens tephra. In: Geochimica et cosmochimica Acta. 63(65): 587-598.

Daux, V., et al., 1997. Kinetic aspects of basaltic glass dissolution at 90°C: role of aqueous silicon and aluminum. In: Chemical Geology 142: 109-126.

Dietzael, M., 2000. Dissolution of silicates and the stability of polysilicic acid. In: Geochimica et cosmochimia. Acta. 64(19): 3275-3281.

Dietzael, M. & E. Usdowiski, 1995. Depolymerization of soluble silicate in dilute aqueous solutions. In: Colloid Polym. Steinkopff. Verlag. Sci. 273: 590-597.

Eric H. O., & R. G. Sigurdur, 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH 3 and 11. Geochimica et Cosmochimica Acta, 65(21): 3671-3681.

Eswaran H., 1972: Morphology of allophane, imogolite and halloysite. In: Clay minerals 9: 281-285.

Farmer, V. C., & J. D. Russell, 1990. The structure and genesis of allophanes and imogolite: their distribution in nonvolcanic soils. In: M.F. DeBoot, M.H.B. Hayes and A. Herbillon (Editors), Soil Colloids and their Association in Soil Aggregates. Proc. NATO Advances.

Fieldes, M. & K. W. Perrott, 1966. The nature of allophane in soils. III. Rapid field and laboratory test for allophane. New Zealand J. of Sci. 9: 599-607.

Fisher, R. V. & H. U. Schmincke, 1984. Pyroclastic Rocks. Springer Verlag. Berlin. 472 pp.

Flórez M. M. T., 2004. Meteorización experimental de los fragmentos de matriz y los vidrios volcánicos. Tesis Ph. D. Universidad Nacional de Colombia, Sede Palmira. 300 pp.

Flórez M. M. T., 2000. Génesis de suelos y paleosuelos ándicos a partir del estudio de pedocomponentes. Tesis de Maestría. Universidad Nacional de Colombia. Medellín. 190 pp.

Flórez M. M. T., 1987: Suelos derivados de Ceniza Volcánica, Sonsón, La Unión y San Diego. Trabajo de Grado. Ingeniera Geóloga. Facultad de Minas. Universidad Nacional de Colombia, Medellín, 287 pp.

Flórez M. M. T. & L. N. Parra., 1992. Características texturales en los componentes de las tefras del Norte de la Cordillera Central de Colombia In: Boletín Ciencias de la Tierra 11: 81-104.

González, S. L., L. N. Parra & M. T. Flórez, 1991. Lito y pedoestratigrafía preliminar para las tefras del Norte de la Cordillera Central Colombiana. In: Boletín de Ciencias de la Tierra. 10: 41-75.

González, S. L., L. N. Parra & M. T. Flórez, 1993: Andisoles fósiles en el Norte de Colombia. In: Revista Suelos Ecuatoriales. 23(1-2): 31-44.

Gustafsson, J. P. 2001. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci 244: 102-112.

Hamilton J. P., C. G. Pantano, & S.L. Brantley, 2000. Dissolution of albite glass and crystal. Geochimica et Cosmochimica Acta, 64(15): 2603–2615.

Harker A., 1909, citado por W. E. Stephens, & A.N. Halliday, 1979. Compositional variation in the Galloway plutons. In: Atherton, M. P. and Tarney, J., “The origin of granite batholiths: Geochemical evidence”, Shiva Geology Series, Nantwich England, 9-17.

Heiken G., & K. Wohletz., 1985. Volcanic ash. Univ. of California. Press, Berkeley. C.C. In: Encyclopedia of volcanoes. Ed. Haraldur Sigurdsson. Wiley N.Y. p. 1155.

Henmi, T. & K. Wada., 1976. Morphology and composition of allophone. Am. Miner. 61: 379-390.

Hermelín, M., 1980. Clasificación de algunos minerales con base en su resistencia a la meteorización química en condiciones tropicales húmedas. Inédito. Medellín 117 pp.

Holmes., 1921. Citado por E. E. Stephens, and A. N. Halliday., 1979: Compositional variation in the Galloway plutons. In: Atherton, M. P. and Tarney, J., “The origin of granite batholiths: Geochemical evidence”, Shiva Geology Series, Nantwich England, 9-17.

Hodson M. E., 1999. Micropore surface area variation with grain size in weathered alkali feldspars: Implications for surface roughness and dissolution studies. In: Geochimica et Cosmochimica Acta, 62(21/22): 3429-3435.

Instituto Geográfico Agustín Codazzi, IGAC, 1991. Genésis y taxonomía de los Andisoles Colombianos. Investigaciones. Vol. 3. No.1. Santafé de Bogotá. 118 pp.

Jackson, M. L., 1968. Weathering of primary and secondary minerals in soils. Trans. Ins. Congr. Soil Sci. 9th, 2, 445-455.

Jaramillo D. F., 2001. Introducción a la Ciencia del Suelo. Libro. Facultad de Ciencias, ICNE, Universidad Nacional de Colombia, Medellín.

Jaramillo D. F., 2000. Efecto del secado de las muestras sobre la extracción selectiva de Fe y Al activos en un Andisol del Norte de la Cordillera Central colombiana. Revista Facultad Nacional de Agronomía. Medellín. 53(2): 1077-1091.

Jaramillo D. F., 1995. Andisoles del Oriente Antioqueño. Caracterización química y fertilidad. Folleto. Universidad Nacional, Medellín. 35 pp.

R. Zapata y A. Arias, 1998. Los suelos derivados de los materiales piroclásticos de la Secuencia El Cedral, en el altiplano de San Félix, Salamina, Caldas. 22 pp. En Internet.

Jeschke A. A., & W. Dreybrodt, 2002. Dissolution rates of minerals and their relation to surface morphology. In: Geochimica et Cosmochimica Acta, 66(17): 3055-3062.

Jongmans A., 1994a. Inheritance of 2:1 phyllosilicates in Costa Rican Andisols. In: Soil Sci. Soc. Am. J. 58: 494-501.

Kanno, I., 1959. Clay minerals of volcanic ash soils and pumice in Japan. Advance clay Sci. Tokyo 1: 213-233.

Kawasaki, H. & S. Aomine, 1966. So-called 14A clay minerals in some Ando soils. Soil Sci. Plant Nutr., 12: 144-150.

Le Maitre, R.W., 1984. A proposal by the IUGS Subcommission on the Systematics of Igneous Rock for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. -Austral. Journal Earth. Sci., Bd. 31: 243-255.

Leturq G., et al., 1999. Initial and long-term dissolution rates of aluminosilicate glasses enriched with Ti, Ar and Nd. In: Chemical Geology 160: 39-62.

Meyer, J. D., 1971. Glass crust on intratelluric phenocrysts in volcanic ash as a measure of eruptive violence. Bull. Volcanologique, 34: 358-368.

Motta M., 1990. Métodos analíticos del Laboratorio de suelos. IGAC. Bogotá 502 pp.

Nagasawa, K., 1978. Weathering of volcanic ash and other pyroclastic materials. In: T. Sudo and S. Shimoda (Editors), Clays and Clay Minerals of Japan. pp. 105-125.

Nanzyo, M., R. Dahlgren & S. Shoji, 1993. Chemical characteristics of volcanic ash soils. In: Volcanic ash soils: Genesis, properties and utilization. Developments in Soil Science 21: 145-187.

Neall, V.E, 1977. Genesis and weathering of Andisols in Taranaki, New Zealand. Soil Sci. 123: 400-409.

Nieuwenhuyse, Jongmans & Breemen, 1994. Citados por Besoain, M. E. 1969: En: Panel sobre suelos derivados de cenizas volcánicas de América Latina; Turrialba, Costa Rica, 6-13 de Junio, p. B1.1-B1.13.

Oelkers E. H., & S. R. Gislason, 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH=3 and 11. In: Geochimica et Cosmochimica Acta, 65(21): 3671-3681.

Parfitt, R. L., & T. Henmi, 1980. Structure of some allophane from New Zealand. In: Clays and Clay Minerals. 28(4): 285-294.

Parra, L. N.; L. H. González, & M. T., Flórez, 1991. Lito y pedoestratigrafia preliminar para las tefras del norte de la Cordillera Central colombiana. En: Boletín de Ciencias de la Tierra. No. 10; 41-73.

Shoji, S., 1983. Mineralogical properties of volcanic ash soils. In: N. Yoshinaga (Editor), Volcanic ash soil. Genesis, Properties, Classification. Hakuyusha, Tokyo, pp. 31-72.

Shoji, S., 1986. Mineralogical characteristics. I. Primary minerals. In: K. Wada (Editor). Ando Soils in Japan, Kyushu University Press, Fukuoka, Japan, pp. 21-40.

Shoji, et al., 1963. Ando soil in Japan. Ed. K. Wada. Publ. Kyushu Univ. Press. Japan. 276 pp.

Shoji, R. Dahlgren & M. Nanzyo, 1993. Genesis of volcanic ash soils. In: Volcanic ash soils: Genesis, properties and utilization. Developments in Soil Science 21: 37-71.

Soil Survey Staff (USDA), 1998. Keys to soil taxonomy. 8th Ed. USDA. Washington D. C. 326 pp.

Sparks R. S., et al., 1977. Volcanic plumes. In: Encyclopedia of volcanoes. Ed. Haraldur Sigurdsson. Wiley N.Y. pp 916-918.

Sposito, G., 1994. Chemical equilibria and kinetics in soils. University of California at Berkeley. N.Y. Oxford. 268 pp.

Sposito, G., 1981. The thermodynamics of soil solutions. Oxford Clarendon press. 223 pp.

Swindale, L. D., 1965. The properties of soils derived from volcanic ash. Meeting on class, and corr of soils from volcanic ash. FAO. Report, Rome 14: 53-55.

Szymanski H. A., 1964. Progress in Infrared spectroscopy. 1-2. Plenum Press. N. Y. 446 y 498 p, respectively.

Szymanski H. A., 1977. The distinctive properties of Andosols. In: Advances in soil science. Edited by B.A. Stewart. Springer-Verlag. New York.

Tadashi Yokoyama, & J. F. Banfield, 2002. Direct determinations of the rates of rhyolite dissolution and clay formation over 52,000 years and comparison with laboratory measurements. Geochimica et Cosmochimica Acta, 66(15): 2665-2681.

Tipping E., C. Rey-Castro, S.E. Bryan & J. Hamilton, 2002. Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, Elsevier Science Ltd. 66(18): 33211-3224.

Turner, F. J.; & J. Verhoogen, 1978. Petrología ígnea y metamórfica. Ed. Omega. 726 pp.

Wada, K., 1980. Mineralogical characteristics of Andisols. In: Soils with variable charge. Edited by B.F.G. Theng. New Zealand Society of Soil Science. Lower Hutt. pp. 87-101.

Walker, G. P., 1971. Grain-size characteristics of pyroclastic deposits. J. Geol. 79: 696-714.

Yamada I., & S. Shoji, 1982. Alteration of volcanic glass of recent Towada ash in different soil environments of Northeastern Japan. In: Soil Science. 135(5): 316-321.

Yamada I., et al., 2002. Speciation of aluminum in soil extracts using cation and anion exchangers followed by a flow-injection system with fluorescence detection using lumogallion. In: Analytical Science 18: 788-791. The Japan Society for Analytical Chemistry.

Yoshinaga N., 1962. Imogolite in some Ando Soil. In: Soil Sci. Plant Nutri. (Japan) 8(3): 22-29.

Zapata, H. R., 2002. Química de los procesos pedogenéticos del suelo. Escuela de Geociencias. Facultad de Ciencias. Universidad Nacional de Colombia, Sede Medellín. 282 pp.

Zapata, H. R., 2002. La Solución del suelo. Sin editar.

Zapata, H. R., 2000. La acidez del suelo. Medellín (Colombia), Universidad Nacional de Colombia. 82 pp.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0