EFFECT OF ALCOHOL AND THE INICIAL CONCENTRATION OF THE PRE­CURSOR OF ALUMINIUM IN THE FORMATION α-AL2O3 BY MEANS OF CONTROLLED PRECIPITATION
PDF (Español (España))

How to Cite

Cobo , J. ., Rodríguez-Páez, . J. E., Villaquirán R, C. ., & Scian, A. . (2023). EFFECT OF ALCOHOL AND THE INICIAL CONCENTRATION OF THE PRE­CURSOR OF ALUMINIUM IN THE FORMATION α-AL2O3 BY MEANS OF CONTROLLED PRECIPITATION. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 29(113), 571–580. https://doi.org/10.18257/raccefyn.29(113).2005.2186

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

One of the important compounds that was used in the structural ceramic is aluminum. During the last years, a variety of synthesis methods have been developed to obtain raw materials with suitable characteristics in terms of the particle composition, size and shape. The controlled precipitation method (CPM) allows to reach these demands and with this method it is possible to control the synthesis one so as to guarantee characteristics of ceramic powder. One stage of the CPM is the formation of the intermediate complexes of cation whose oxide is necessary. In this work the effect of the concentration and the solvent of wash during this process are indicated. For this study we used potenciometric titration to follow the advancement of the process. We utilized XRD and TEM to characterize the solid phase present in the system.

https://doi.org/10.18257/raccefyn.29(113).2005.2186

Keywords

α-Al2O | precipitation | ethanol | precursor
PDF (Español (España))

References

Baes, C.F., Mesmer, R.E. 1976. “The hidrolisis of cations”, Jonh Wiley & Sons, Ltd.

Brace, R., Matijevic, E., 1973. “Aluminium hydroux oxide sols I. Sherical Particles of narrow size distribution” Inorg. Nucl. Chem., v 35, 3691-3705.

Brown, P.L., Sylva, R.N., Batley, G.E., Ellis, J. 1985. J. Chem. Dalton Trans., 1967.

Brinker, C.J, Scherer, G.W. 1990. “Sol-gel Science; the physics and chemistry of sol-gel Processing”, Academic Press, Inc.

Burriel, F, Conde, F., Arribas, S., Hernández, J. 1994. “Química Analítica Cualitativa”, Editorial Paraninfo S.A.

Evans, H.T. 1966. Inorg. Chem v 5, 967.

Gitzen, W.H. 1970. “Alumina as a Ceramic Material”, The American Ceramic Society, 735 Ceramic Place, Westen Ville, Ohio.

Johansson, G. 1960. “On the crystal structures of son basic Aluminium salt” Acta Chem. Scand., v 14(3), 771-773.

Jolivet, J. 2000. “Metal oxide chemistry and syntesis”, Jonh Wiley & Sons, Ltd.

Kubota, H., 1956 “Propieties an Volumetric Determination of Aluminium Ion, dissertation”, Univ. Of Wisconsin, Diss. Abstr. v.16, 864 Matijevic, E., Mathai K.G., Ottewill R.H., Kerker M. 1961. “Detection of Metal-Hydrolysis by Coagulation (III) Aluminium”, J. Phys. Chem. v 65, 826-830

Pierre, A. 1998. “Introduction to sol-gel processing”. Kluwer Academic Publisher. Junio.

Rodríguez-Páez J.E., Villaquirán C., Cobo J. 2001. “Estudio de la formación de los complejos intermedios durante la sisntesis de Alúmina”. Materials Research v 4, (4), 255-264.

Schaefer, D.W, Sheliman, R.A, Keefer, K.D, Martin, J.E. 1986. Physica, 104 A, 105

Singh, S.S., Can, J. 1969. Soil Sci., v 49, 383

Tezak, B. 1966. “Coulombic and Stereochemical Factors of Colloid Stability of precipitating Systems” Disc. Faraday Soc., v 42, 175-186.

Thompson, A.R., Kunwar, A.C., Gutowsky, H.S., Oldfield, E. 1987. J. Chem. Soc. Dalton Trans 23-17.

Vermeulen, A.C., Geus, J.W., Stol, R:J., de Bruyn, P.L. 1975. “Hydrolisis-Pr ecipitation Studies of Aluminium (III) Solutions” J. Colloid Interface Sci., v. 51, (3), 449-458.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales