Abstract
Two Ranvier nodes are modelled by FitzHugh-Nagumo coupled electric circuits, and their dynamic behaviour is studied. Taking values around the Hopf bifurcation the coupling parameter generates a rich initial-condition-dependent behaviour: excitability, bistability, and birhythmicity.
Keywords
References
Hodgkin, A. L. & Huxley, A. F., 1962. A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, 117, 500.
FitzHugh, R.. 1961, Impulses and physiological states in models of nerve membrane, Biophysical Journal 1, 445.
Nagumo, J. S., Arimoto, S. & S Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon, Proceding of IRE. 50, 2061.
Campos, D. & Isaza, J. F., 2002. Proleg´omenos a los sistemas din´amicos, Universidad Nacional de Colombia, Bogot´a.
Buri´c, N., Todovori´c, D., 2003. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E 67, 066222. Tambi´en: arXiv:nlin.CD/0305010.
Liu, W-M., 1994. Criterion of Hopf Bifurcations without Using Eigenvalues, J. Math. Analyis and Appl. 182, 250.
Asada, T., Yoshida, H., 2003. Coefficient criterion for four dimensional Hopf bifurcations: a complete mathematical characterization and applications to economic dynamics, Chaos, Solitons and Fractals 18, 525.
Keener, J. P. & Sneyd, J., 1998. Mathematical Physiology, Springer, New York.
Rinze, J., 1981. Models in neurobiology, Plenum Press, New York.
Hall, J. E. & Guyton, A. C., 2000. Tratado de Fisiolog´ıa M´edica, McGraw-Hill, Mexico.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales