ASPARTIC ACID POSITION EFFECT IN SOLUBILITY AND ADSORPTION ONTO ALUMINIUM HYDROXIDE IN AN ANALOGUE PEPTIDE SERIES
PDF (Español (España))

How to Cite

Trujillo, M. ., Oviedo, . L. A. ., Guzmán , F. ., & Calvo, J. C. . (2023). ASPARTIC ACID POSITION EFFECT IN SOLUBILITY AND ADSORPTION ONTO ALUMINIUM HYDROXIDE IN AN ANALOGUE PEPTIDE SERIES. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 29(111), 283–288. https://doi.org/10.18257/raccefyn.29(111).2005.2162

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Two analogue series of a peptide sequence from the 42 kD fragment of Plasmodium falciparum MSP-1 protein were synthesized by systematically replacing each one of the positions by aspartic acid or lysine to study the physical adsorption phenomenon. Such modifications showed a nonregular tendency regarding solubility and adsorption data. The aspartic acid best adsorption data was obtained by substituting aspartic acid in position 6, and the worst in position 5; however, no significant structural differences were found between these analogue peptides. Decreasing adsorption values in the lysine analogue series, indicate that adsorption into aluminium hydroxide is predominantly guided by electrostatic effects.

https://doi.org/10.18257/raccefyn.29(111).2005.2162

Keywords

Adsorption | Aluminium hydroxide | Solubility, | Peptide analogues | Aspartic acid
PDF (Español (España))

References

Al-Shakhshir, R. H., Regnier, F. E., White, J. L., & S. L. Hem. 1994. Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine 12: 472-474.

Al-Shakhshir, R. H., Lee, A. L., White, J. L., & S. L. Hem. 1995, Interaction in model vaccines composed of mixtures of aluminium-containing adjuvants. J. Colloid Interface Sci. 169: 197-199

Al-Shakhshir, R. H., Regnier, F. E., White, J. L., & S. L. Hem. 1995b. Contribution of electrostatic and hydrofobic interactions to the adsorption of proteins by aluminum-containing adjuvants. Vaccine 13: 41-44.

Blackman, M. J. & A. A. Holder. 1992. Secondary processing of the Plasmodium falciparum merozoite surface protein by a calcium-dependent membrane-bound serine protease shedding of MSP as a noncovalently associated complex with other fragments of the MSP-1. Molec. And. Biochem. Parasitol., 49: 29-34

Brown, R. E., Jarvis, K. L. & K. J. Hyland, K. 1989. Protein measurement using Bicinchoninic acid: Elimination of interfering substances. Anal. Biochem. 180: 136-139

Callahan, P. M., Shorter, A. L, &. S. L. Hem. 1991. The importance of surface charge characteristics of aluminum-containing adjuvants. Vaccine 12:472-474.

Chang, M., White, J. L., Nail S. L. & S. L. Hem. 1997. Role of the electrostatic attractive force in the adsorption of proteins by aluminium hydroxide adjuvant. PDA J. Pharm. Sci. & Tech. 51(1): 25-29

Espejo, B. F., Cubillos, M., Salazar, L. M., Guzmán, F., Urquiza, M., Ocampo, M., Silva, Y., Rodríguez, R., Lyoi, E. & M. E. Patarroyo. 2001. Structure, Immugenicity, and Protectivity relationship for the 1585 malarial peptide and its substitution analogues. Angew. Chem. Int. Ed. 40: 4654-4657

Hem, S. L. & J. L. White. 1984. Characterization of aluminium hydroxide for use as an adjuvant in parenteral vaccines. J. Parenteral Sc. And Tech. 38(1): 1-10.

Hem, S. L. &. J. L. White. En: Powell M.F, Newman M.J., and Burdman J.R. editors. 1995. Vaccine design-the subunit and adjuvant approach. New York: Plenum Press, 249-75.

Houghten, R. 1985. General method for the rapid solid-phase synthesis of large number of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci., 82: 5131-5.

Martin, A., Swarbrick, J. & A. Camarata. 1983. A Physical Pharmacy, 3 rd edition, Lea & Febiger (Eds.), Philadelphia. Matheis, W., Zott, A. & M. Schwanig. 2002. The role of the adsorption process for production and control combined adsorbed bacines. Vaccine 20: 67-73.

Merrifield, R. B. 1963. Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J. Am.Chem. Soc. 85: 2149-2154.

Rinella, J. V.jr., White, J. L., & S. L. Hem. 1995. Effect of anions on model aluminium adjuvant containing vaccines. J. Colloid Interface Sci. 172:121-130.

Seeber, S. J., White, J. L., & S. L. Hem. 1991a. Solubilization of aluminum-containing adjuvants by constituents of interstitial fluid. J. Parenteral Sci. Tech. 45: 156-159

Seeber, S. J., White, J. L., & S. L. Hem. 1991b. Predicting the adsorption of proteins by aluminum-containing adjuvants. Vaccine 9: 201-203.

Serna, C. J., White, J. L. & S. L. Hem. 1977. Anion-aluminium hydroxide gel interactions. Soil Sci. Soc. Am. J. 41: 1009-1013.

Serna, C. J., White, J. L., & S. L. Hem. 1978, Factors affecting homogeneous precipitation of aluminium hydroxide gel. J. Pharm. Sci. 67(8):1179-1181.

Shirodkar, S., Hutchinson, R. L., Perry, D. L., White, J. L., & S. L. Hem. 1990. Aluminum compounds used as adjuvants in vaccines, Pharm. Res. 2:1282-1288.

Smith, P. K., Krohn, R., Hermanson, A., Mallia, K., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., & D. Klenk. 1985, Measurement of protein using Bicinchoninic acid. Anal. Biochem. 150: 76-85

Wiechelman, K., Braun, R. & J. Fitzpatrick. 1988. Investigation of the Bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal. Biochem. 175: 231-237.

World Health Organization (W.H.O.). 1976. Immunological adjuvants. World Health Organization Technical Report Series No. 595. Geneva: WHO, pp.6-8.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales