Abstract
The Magdalena river basin sediment yield is 689 ± 528 t km -2 yr -1 with maximum values up to 2000 t km -2 yr -1 . Multiple regression analysis indicates that runoff and maximum discharges are the major controls to explain Magdalena basin sediment yield variance. A numerical model with a 58% efficiency (P< 0.01) and 11% relative root mean square error (RRMSE) was obtained to describe the Magdalena basin sediment yield. Time series analyses show that sediment load have upward trends in 68% of the Magdalena river basin.
Keywords
References
Anhert, F., 1970. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. Am. J. Sci. 268: 243-263.
Bowerman, B., O´Conell, R., 1987. Forecasting and time series: an applied approach. Duxbury Press, Belmont. 726 p.
Braud, I., Vich, A., Zuluaga, J., Fornero, L., Pedrani, A., 2001. Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling. Journal of Hydrology. 245: 124-144.
Bruijnzeel, L., 1990. Hydrology of moist tropical forest and effects of conversion: a state of the knowledge. UNESCO, París. 224 p.
Camilloni, I., Barros, V., 2003. Extreme discharge events in the Paraná river and their climate forcing. Journal of Hydrology. 278:94-106.
Costa, M., Botta, A., Cardille, J., 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins river, Southeastern Amazonia. Journal of Hydrology. 283: 206-217.
Chuvieco, E., 2000. Fundamentos de teledetección espacial. Rialp S.A., Madrid. 568 p.
Douglas, I., 1967. Man, Vegetation and Sediment Yield of Rivers. Nature. 215: 925-928.
Dunne, T., 1979. Sediment yield and land use in tropical catchments. Journal of Hydrology. 42: 281-300.
Farnsworth, K., Milliman, J. D., 2003. Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas river example. Global and Planetary Change. 39: 53-64.
Guy, H., 1970. Fluvial sediment concepts. U.S. Geological Survey. United States Government Printing Office, Denver. 55 p.
Harrison, C.G., 2000. What factors control mechanical erosion rates. Int. Journal of Earth Sciences. 88: 1-11.
Higgitt, D., Lu, X., 2001. Sediment delivery to the Three Gorges: 1. Catchment controls. Geomorphology. 41: 143-156.
Holeman, J., 1968. The sediment yield of major rivers of the world. Water Resources Research. 4: 737-747.
Hovius, N., 1998. Controls on sediment supply by large rivers. SEPM Special Publication. 59: 3-16.
IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales), 1998. El medio ambiente en Colombia. IDEAM, Bogotá. 495 p.
IDEAM, 2001. Estudio ambiental de la cuenca Magdalena Cauca y elementos para su ordenamiento territorial. (Formato digital) IDEAM, 2003. Datos diarios de caudal, concentración de sedimentos en suspensión y transporte de sedimentos en suspensión para estaciones selectas de la cuenca del Magdalena. (Formato digital)
Inman, D., Jenkins, S., 1999. Climate change and the episodicity of sediment flux of small California rivers. Journal of Geology. 107: 251-270.
Jansen, J., Painter, R., 1974. Predicting sediment yield from climate and topography. Journal of Hydrology. 21: 371-380.
Knighton, D., 1984. Fluvial forms and processes. Chaucer Press, Great Britain. 217 p.
Krishnaswamy, J., Halpin, D., Ritcher, D. , 2001. Dynamics of sediment discharge in relation to land-use and hydroclimatology in a humid tropical watershed in Costa Rica. Journal of Hydrology. 253: 91-109.
Lane, S.N., Richards, K.S., Chandler, J. H., 1996. Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel. Geomorphology. 15: 1-15.
Ludwig, W., Probst, J., 1998. River sediment discharge to the oceans: present controls and global budgets. American Journal of Science. 298: 265-295.
Meade, R., Parker, R., 1985. Sediments in rivers of the United States. U.S Geological Survey-Water Supply Paper. 2275: 49-60.
Mesa, O., Poveda, G., Carvajal, F., 1997. Introducción al clima de Colombia. Universidad Nacional de Colombia-Sede Medellín. Imprenta de la Universidad Nacional, Bogotá. 390 p.
Milliman, J.D., 1997. Fluvial sediment discharge to the sea and the importance of regional tectonics. In: Ruddiman, W. (ed.). Tectonic uplift and climate change. New York, Plenum Press. pp. 239-257.
Milliman, J. D., Meade, R. H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology. 91: 1-21.
Milliman, J. D., Syvitski, P.M., 1992. Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology. 100: 525-544.
Ministerio de Agricultura, 1977. La erosión de tierras en Colombia. Editorial Stella, Bogotá. 56 p.
Mojica, J., Franco, R., 1992. Estructura y evolución tectónica del valle medio y superior del Magdalena. Geología Colombiana. 17: 41-64
Montgomery, D., Runger, G ., 1996. Probabilidad y estadística aplicadas a la ingeniería. McGraw-Hill, Mexico D.F. 895 p.
Petts, G., Foster, I., 1985. Rivers and landscapes. Hodder & Stoughton, London. 274 p.
Pinet, P., Souriau, M., 1988. Continental erosion and large-scale relief. Tectonics. 7: 563-582.
Reading, A., Thompson, R., Millington, A., 1995. Humid Tropical Environments. Blackwell Publishers Inc., Oxford. 429 p.
Restrepo, J. D., Kjerve, B., 2000. Magdalena river: interannual variability (1975-1995) and revised water discharge and sediment load estimates. Journal of Hydrology. 235: 137-149.
Stallard, R., 1988. Weathering and erosion in the humid tropics. In: Lerman, A; Meybeck, M., (eds.). Physical and Chemical Weathering in Geochemical Cycles. Kluwer Academic Publishers. pp. 225-246.
Syvitski, J., Peckham, S., Hilberman, R., Mulder, T., 2003. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology. 162: 5-24.
Summerfield, M.A., Hulton, N.J., 1994. Natural controls of fluvial denudation rates in major world drainage basins. J. Geophysical Research. 99:13871-13883.
Thomas, M., 1994. Geomorphology in the tropics: a study of weathering and denudation in low latitudes. Wiley, Chichester. 460 p.
Trimble, S., 1977. The fallacy of stream equilibrium in contemporary denudation studies. American Journal of Science. 277: 876-887.
UPME, 2004. Unidad de Planeación Minero Energética Sistema de Información Minero Energético de Colombia (SIMEC). http://www.upme.gov.co/simec
VanSickel, J., Beschta, R.L., 1983. Supply-based models of suspended sediment transport in streams. Water Resources Research. 19: 768-778.
Vélez, J., Poveda, G., Mesa, O., 2000. Balances hidrológicos de Colombia. En: Memorias XV Seminario Nacional de Hidráulica e Hidrología. Universidad Nacional-Sede Medellín, 2002(Formato digital).
Verstraeten, G., Poesen, J., 2001. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology. 40: 123-144.
Verstraeten, G., Poesen, J., de Vente, J., Koninckx, X., 2003. Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology. 50: 327-348.
Walling, D., Fang, D., 2003. Recent trends in the suspended sediment loads of the worlds rivers. Global and Planetary Change. 39:111-126.
Walling, D., Kleo, A., 1979. Sediment yields of rivers in areas of low precipitation: a global view. In: The hydrology of areas of low precipitation, Proceedings of the Canberra Symposium, IAHS-AISH Publication. 128: 479-493.
Walling, D., Webb, B., 1983. Patterns of sediment yield. In: Gregory, K. (ed.). Background to Paleohydrology. Wiley. pp. 69-100.
Wilson, L., 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science. 273: 335-349.
Xu, J., Cheng, D., 2002. Relation between the erosion and sedimentation zones in the Yellow river, China. Geomorphology. 48: 365-385.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales