CHEMICAL STUDY OF THE GIANT CASHEW NUT (Anacardium giganteum)
PDF (Español (España))

How to Cite

Ramos, F. A. ., Osorio, C. ., Duque, C. ., Cordero, . C. ., Aristizábal , F., Garzón, C. ., & Fujimoto, Y. . (2023). CHEMICAL STUDY OF THE GIANT CASHEW NUT (Anacardium giganteum). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(109), 565–575. https://doi.org/10.18257/raccefyn.28(109).2004.2117

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

From the methanolic extract of the Anacardium giganteum nut, the following compounds: 5-[8’(Z),11’(Z),14-pentadecatrienyl]resorcinol 1, 5-[8’(Z),11’(Z)-pentadecadienyl]resorcinol 2, 5-[8’(Z)-pentadecenyl]resorcinol 3, 6-[8’(Z),11’(Z),14-pentadecatrienyl]salicylic acid 4, 6-[8’(Z),11’(Z)-pentadecadienyl] salicylic acid 5, 6-[8’(Z)-pentadecenyl]salicylic acid 6, 6-pentadecylsalicylic acid 7, naringenin-7-(6”-O-p-cumaroyl)-β-D-glucopyranoside 8 and naringenin-7-O-β-D-glucopyranoside 9, were isolated and identified by spectroscopic techniques (MS, 1 H and 13 C NMR). It is important to note that this is the first time that the unequivocal assignment of 1 H and 13 C NMR signals of compound 8 is made on the basis on its HMQC and HMBC spectra. This is also the first time that cytotoxic activity of compounds 1 – 9 against human tumor cell lines HEp-2, MCF-7, HT-29 and MKN-45 is evaluated. In these assays, compounds 1 – 3 and 8 were active against the above-mentioned cell lines.

https://doi.org/10.18257/raccefyn.28(109).2004.2117

Keywords

Anacardiaceae | Anacardium giganteum | phenolic lipids | citotoxicity | giant marañon
PDF (Español (España))

References

Arévalo LE, Reyes J. 2001. Aproximación al conocimiento de la familia Anacardiaceae en aspectos taxonómicos, fitogeográficos y etnobotánicos en la región del Araracuara (Amazonia colombiana). Tesis de Biología. Universidad Nacional de Colombia. Bogotá.

Arisawa M, Ohomura K, Kobayashi A, Morita N. 1989. A cytotoxic constituent of Lysimachia japonica thumb (Primulaceae) and the structure activity relationships of related compounds. Chem. Pharm. Bull. 37(9): 2431-2434.

Betancur-Galvis L, Zuluaga C, Arno M, González MA, Zaragoza RJ. 2001. Structure-activity relationship of in vitro antiviral and cytotoxic activity of semisynthetic analogues of scopadulane diterpenes. J. Nat. Prod. 64(10): 1318-1321.

Bonilla A, Duque C, Garzón C, Takaishi Y, Yamaguchi K, Hara N, Fujimoto Y. New antimicrobial yellow pigments from the seeds of Champa (Campomanesia lineatifolia). Phytochemistry. Sometido.

Bouillant ML, Jacoud C, Zanella J, Favre-Bonvin J, Bally R. 1994. Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates. Phytochemistry 35(3): 769-771.

Breitmaier E, Voelter W. 1989. Carbon-13 NMR Spectroscopy. 3 rd Edition. VCH. Weinheim. Pags. 450-465.

Cordero, CP. 2002. Implementación de un método in vitro de evaluación preliminar de actividad anticancer de extractos vegetales empleando líneas celulares derivadas de tumores humanos. Tesis Química Farmaceútica. Universidad Nacional de Colombia. Bogotá.

El-Negoumy SI, Abdalla MF, Saleh NAM. 1986. Flavonoids of Phlomis aurea and Phlomis floccosa. Phytochemistry 25(3): 772-774.

Garcés W, Garcés F, Pellicciari I, Hara SM, Ferreira F, Nakasse L, Siqueira J. 1997. A bioactive naringenin coumaroil glucoside from Mabea fistulifera subsp. robusta. Planta Med. 63 (4): 386.

González MJTG, De Oliveira CJC, Fernández JO, Kijoa A, Herz W. 1996. Further alkyl and alkylphenols of Knema astrosiamensis. Location of the double bound in the alkenyl side chains. Phytochemistry 43(6): 1333-1337.

Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin JP, Asakawa Y. 1987. Antitumor principles from Ginkgo biloba L. Chem. Pharm. Bull. 35(7): 3016-3020.

Jantová S, Cipák L, Cernaková M, Kostalová D. 2003. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. Journal of Pharmacy and Pharmacology 55:1143-1149.

Justensen U, Knithsen P, Leth T. 1998. Quantitative analysis of flavonols, flavones and flavanones in fruits, vegetables and beverages by high performance liquid chromatography with photodiode array and mass spectrometric detection. J. Chromat. A. 799(1-2): 101-110.

Kozubek A, Tyman JHP. 1999. Resorcinolic lipeds, the natural nonisoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99(1):1-25.

Kubo I, Ochi MO, Vieira PC, Komatsu S. 1993. Antitumor agents from cashew (Anacardium occdentale) apple juice. J. Agric. Food Chem. 41(6):1012-1015

Lytollis WJ, Scannell RT, An H, Murty VS, Reddy KS, Barr JR, Hecht SM. 1995. 5-Alkylresorcinols from Hakea trifurcata that cleave DNA. J. Am. Chem. Soc. 117(51): 12683-12690.

Lie Ken Jie M, Mustafa J. 1997. High-resolution nuclear magnetic resonance spectroscopy. Applications to fatty acids and tryacylglycerols. Lipids 32(10): 1019-1034.

Markham KR. 1982. Techniques of Flavonoid Identification. Academic Press, London. Nakagawa H, Takaishi Y, Fujimoto Y, Osorio C, Duque C, Garzón C. Chemical constituents from the Colombian medical planta Maytenus laevis. J. Nat. Prod. Sometido.

Rahman W, Ishratullah K, Wagner H, Seligmann O, Chari V, Österdhall BG. 1978. Prunin-6”-O-p-coumarate, a new acylated flavanone glycoside from Anacardium occidentale. Phytochemistry 17(6): 1064-1065.

Rao L, Kumari G, Rao N. 1985. Flavonoid glycosides from Anisomeles ovata. J. Nat. Prod. 48(1): 150-151.

Sang S, Lapsley K, Jeong W, Lachance P, Ho Ch, Rosen R. 2002. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch) J. Agric. Food Chem. 50(8):2459-2463.

Sargent M, Wangchareontrakul S. 1989. Synthesis and identification of alkenyl and alkadienyl catechols from Brimese Lac. J. Chem. Soc. Perkin Trans. I 2: 431-439.

Sargent M, Wangchareontrakul S. 1990. The synthesis of the first natural host germination stimulant for Striga asiatica (Witchweed). J. Chem. Soc. Perkin Trans. I 5: 1429-1434.

Satoh M, Takeushi N, Nishimura T, Ohta T, Tobinaga S. 2001. Synthesis of anacardic acids, 6-[8’(Z),11’(Z)-pentadecadienyl-]salycilic acid and 6-[8’(Z),11’(Z),14-pentadecatrienyl]salycilic acid. Chem. Pharm. Bull. 49(1): 18-22.

Sharma NK, Sharma VN. 1966. Structure of anagigantic acid isolated from Anacardium giganteum. Indian J. Chem., 4(11): 504.

Spencer G, Tjarks LW, Kleiman R. 1980. Alkyl and phenylalkyl anacardic acids from Knema elegans seed oil. J. Nat. Prod.43(6): 724-730.

Suzuki Y, Esumi Y, Uramoto M, Kono Y, Sakurai A. 1997. Structural analyses of carbon chains in 5-alk(en)ylresorcinols of rye and wheat whole flour by tandem mass spectrometry. Biosci. Biotech. Biochem. 61(3): 480-486.

TCA, Tratado de Cooperación Amazónica. 1994. Plantas medicinales amazónicas. Realidad y perspectivas. Tratado de Cooperación Amazónica, Secretaría pro Tempore. Lima (Perú).

TCA, Tratado de Cooperación Amazónica. 1997. Cultivo de frutales nativos amazónicos, manual para el extensionista. Tratado de Cooperación Amazónica, Secretaría pro Tempore. Lima (Perú).

Tyman JHP. 1979. Non isoprenoid long chain phenols. Chem Soc. Rev. 8: 499-537.

Wang D, Girard TJ, Kasten TP, LaChance RM, Miller-Widerman MA, Durley RC. 1998. Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor VII-a complex. J. Nat. Prod. 61(11): 1352-1355.

Yamagiwa Y, Ohayashi K, Sakamoto Y, Arikawa S, Kamikawa T. 1987. Synthesis of anacardic acids and ginkgoic acid. Tetrahedron, 43(15):3387-3394.

Yokosuka A, Mimaki Y, Sashida Y. 2002. Steroidal and pregnane glycosides from rhizomes of Tacca chantrieri. J. Nat. Prod. 65(9): 1293-1298.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales