THE RESTRICTED THREE BODY PROBLEM BY LIE SERIES.
PDF (Español (España))

How to Cite

Portilla, J. G. (2023). THE RESTRICTED THREE BODY PROBLEM BY LIE SERIES. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 27(103), 165–172. https://doi.org/10.18257/raccefyn.27(103).2003.2059

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Starting from the differential equations that describe the motion of a body of infinitesimal mass under the Newtonian gravitational field produced by two bodies of comparable mass which orbit in circular orbits about their common center of mass (circular, restricted, three-body problem), we obtained, by a Lie operator, solutions that permit, by recurrent algebraic expressions, to find the components of the position and velocity vectors by means of Lie series. We present a comparison between the numerical direct integrations and the solution by Lie series.

https://doi.org/10.18257/raccefyn.27(103).2003.2059

Keywords

Celestial Mechanics | Lie-series | Restricted three body problem
PDF (Español (España))

References

Delva, M. 1984. lntegration of the Elliptic Restricted ThreeBody Problem with Líe-Series. Cel. Mech. 34: 145-154.

Delva, M. 198,5. A Lie lntegrator Program and Test for the Elliptic Restricted Three Body Problem. Astron. Astrophys. Suppl. Ser. 60: 277-284.

Deprit, A. 1968. Canonical Transformations Depending of a Small Parameter. Ce!. Mech. 1: 12-30.

Everhart, E. 1985. An Efficient lntegrator that Uses GaussRadau Spacings. Dynamics of Comets: Their Origin and Evolution, Carusi & Valsecchi (edi.): 185--202.

Grobner, W. 1960. Die Lie-Reihen und ihre Anwendunge, Springer-Verlag, Berlín.

Hanslmeier, A., Dvorak, R. 1984. Numerical lntegration with Líe-series. Astron. Astrophys. 132: 203-207.

Hori, G. 1966. Theory of General Perturbations with Unspecified Canonical Variables. Publicatic,ns of the Astronomical Society, Japan. 18: 287-296.

Parv, B. 1993. Lie Series and Computer Algel,ra Tieotrnent of the n-Body Problem. Romanian Astronc,mil'al Journal, 3, No. 2.

McCuskey, S. W. 1963. lntroduction to Celestial 1echanics, Addison-Wesley, Reading ( Massachusetts).

Portilla J.G. 2001. Elementos de astronc,mía de, pusición, Unibiblos, Bugotá.

Spiegel, M. 1967. Schaum's Outline of Theory aLd Problems of Theoretical Mechanics, Schaum Pub. Co., New York

Stumpff, K. 1968. On the Application of Li,.,-Series to the Problems of Celestial Mechanics. NASA TI' [) 4460.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0