CONTRIBUTION TO THE STUDY OF PARTIAL DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE
PDF (Español (España))

How to Cite

Cossio, J. . (2023). CONTRIBUTION TO THE STUDY OF PARTIAL DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(106), 135–145. https://doi.org/10.18257/raccefyn.28(106).2004.2038

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this paper I present the most important results of my research studying the solutions of nonlinear partial differential equations of the type.
In this study, we focus on nonlinear partial differential equations of the form ∆u + λf(u) = 0 in Ω, u = 0 on ∂Ω, where λ ∈ R, Ω is a smooth bounded domain in RN, ∆ = Σ ∂²/∂x²ᵢ is the Laplacian operator, and f : R → R is a nonlinear function. Our theorems were obtained using bifurcation theory, variational methods, and a minmax principle developed by the author in collaboration with A. Castro and J. M. Neuberger ([Cas-Cos-Nu1], 1997). We also present some theorems related to algorithms for approximating solutions to nonlinear problems of type (1), along with a set of open questions.

https://doi.org/10.18257/raccefyn.28(106).2004.2038

Keywords

Semilinear elliptic equations | bifurcation theory | variational methods | construction of solutions
PDF (Español (España))

References

[Ad-Cas] H. Adu ́en and A. Castro, Infinitely Many Nonradial Solutions to a Superlinear Dirichlet Problem, Proc. Amer. Math. Soc. 131 (2003), 835–843.

[Am-Pro] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics 34, Cambridge University Press, Cambridge 1993.

[Am-Ra] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Anal. 14 (1973), 349–381.

[Ar-Cos1] H. Arango y J. Cossio, Construcci ́on de Soluciones Radialmente Sim ́etricas para un Problema El ́ıptico Semilineal, Rev. Colombiana Mat.30 (1996), 77–92.

[Ar-Cos2] H. Arango and J. Cossio, Explicit Construction, Uniqueness, and Bifurcation curves of Solutions for a Nonlinear Dirichlet Problem in a Ball, Electronic Journal of Differential Equations, Conf. 05, 2000, 1–12.

[Cas1] A. Castro, M ́etodos de Reducci ́on via Minimax, Primer Simposio Colombiano de An ́alisis Funcional, Medell ́ın, Colombia, (1981).

[Cas-Cos1] A. Castro and J. Cossio, A Bifurcation Theorem and Applications, Dynamic Systems and Applications 2 (1993), 221–226.

[Cas-Cos2] A. Castro and J. Cossio, Multiple Radial Solutions for a Semilinear Dirichlet Problem in a ball, Rev. Colombiana Mat. 27 (1993), 15–24.

[Cas-Cos3] A. Castro and J. Cossio, Multiple Solutions for a Nonlinear Dirichlet Problem, SIAM J. Math. Anal. 25 (1994), 1554–1561.

[Cas-Cos-Nu1] A. Castro, J. Cossio and J. M. Neuberger, A Sign-Changing Solution for a Superlinear Dirichlet Problem, Rocky Mountain J.M. 27 (1997), 1041–1053.

[Cas-Cos-Nu2] A. Castro, J. Cossio and J. M. Neuberger, On Multiple Solutions of a Nonlinear Dirichlet Problem, Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), 3657–3662.

[Cas-Cos-Nu3] A. Castro, J. Cossio and J. M. Neuberger, A Minimax Principle, Index of the Critical Point, and Existence of Sign-changing Solutions to Elliptic Boundary Value Problems, Electronic Journal of Differential Equations 1998 (1998), 1–18.

[Cas-Laz1] A. Castro and A. C. Lazer, Applications of a Max-min Principle, Rev. Colombiana Mat. 10 (1976), 141–149.

[Cas-Laz2] A. Castro and A. C. Lazer, Critical Point Theory and the Number of Solutions of a Nonlinear Dirichlet Problem, Ann. Mat. Pura Appl. 70 (1979), 113–137.

[Cos] J. Cossio, M ́ultiples Soluciones para un Problema El ́ıptico Semilineal. En Memorias de la III Escuela de Verano en geometr ́ıa diferencial, ecuaciones diferenciales parciales y an ́alisis num ́erico. Academia Colombiana de Ciencias Exactas F ́ısicas y Naturales, Colecci ́on memorias No. 7, 1995, 53–59.

[Cos-Le-Nu] J. Cossio, S. Lee, and J. M. Neuberger, A Reduction Algorithm for Sublinear Dirichlet Problems, Nonlinear Analysis, 47 (2001), 3379–3390.

[Cos-He] J. Cossio and S. Herr ́on, Nontrivial Solutions for a Semilinear Dirichlet Problem with Nonlinearity Crossing Multiples Eigenvalues, Submitted for publication in the Journal of Dynamics and Differential Equations.

[Cos-Ve] J. Cossio y C. V ́elez, Soluciones no Triviales para un Problema de Dirichlet Asint ́oticamente Lineal, Aceptado para publicaci ́on en la Revista Colombiana de Matem ́aticas, 2003.

[Ch] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, 1939.

[Cr-Ra] M. Crandall and P. Rabinowitz, Bifurcation from Simple Eigenvalue, J. Funct. Anal. 8 (1971), 321–340.

[Da] E. Dancer, Counterexamples to Some Conjectures on the Number of Solutions of Nonlinear Equations, Math. Ann. 16 (1976), 1361–1376.

[De-War] E. Deumens and H. Warchall, Explicit Construction of all Spherical Symmetric Solitary Waves for a Nonlinear Wave Equation in Multiple Dimensions, Nonlinear Analysis, Theory, Methods and Applications 12 (1988), 419–447.

[Ek] I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974), 324–353.

[Es] M. Esteban, Multiple Solutions of Semilinear Elliptic Problems in a Ball, J. Differential Equations 57 (1985), 112–137.

[He] M. Henon, Numerical Experiments on the Stability of spherical Stellar Systems, Astro. Astrophys. 24 (1973), 229–238.

[Li-Ya] E. Lieb and H. T. Yau, The Chandrasekhar Theory of Stellar Collapse as the Limit of Quantum Mechanics, Commun. Math. Phys. 112 (1987), 147–174.

[Ke-An] J. Keller and S. Antman, Bifurcation Theory and Nonlinear Eigenvalue problems, W. A. Benjamin, Inc., New York, 1969, 395-409.

[Lan-Laz-Me] E. M. Landesman, A. C. Lazer, and D. Meyers, On Saddle Point Problems in the Calculus of Variations, the Ritz Algorithm, and Monotone Convergence, J. Math. Anal. Appl. 53 (1975), 594–614.

[Laz-Sol] A. C. Lazer and S. Solimini, Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Analysis TMA 12 (1988), 761–775.

[Lj-Sc] L. Ljusternik and L. Schnirelman, M ́ethodes Topologiques dans les Probl ́emes Variationnels, Hermann, Paris, 1934.

[Mors1] M. Morse, Relations Between the Critical Points of a Real Function of n Independent Variables, Trans. Amer. Math. Soc. 27 (1925), 345–396.

[Mors2] M. Morse, The Calculus of Variations in the Large, Amer. Math. Soc. Colloq. Publ., 18, 1934.

[Pa-Sm] R. Palais and S. Smale, A Generalized Morse Theory, Bull. Amer. Math. Soc. 70 (1964), 165–171.

[Ra1] P. Rabinowitz, Some Global Results for Nonlinear Eigenvalue Problems, J. Funct. Anal. 7 (1971), 487-513.

[Ra2] P. Rabinowitz, Topological Methods in Bifurcation Theory, S ́eminaire de Math ́ematiques Sup ́erieures, S ́eminaire Scientifique OTAN, Les Presses de l’Universit ́e de Montreal, Montreal, 1985.

[Ra3] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential equations, Regional Conference Series in Mathematics, 65, Providence, R. I., AMS (1986).

[Wa] Z. Q. Wang, On a Superlinear Elliptic Equation, Ann. Inst. H. Poincar ́e. Analyse Non Lin ́eaire 8 (1991), 43–57.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0