p−ADIC OSCILLATORY INTEGRALS AND NEWTON POLYHEDRA
PDF

How to Cite

Zuniga-Galindo, W. A. . (2023). p−ADIC OSCILLATORY INTEGRALS AND NEWTON POLYHEDRA. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(106), 96–99. https://doi.org/10.18257/raccefyn.28(106).2004.2024

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

This paper provides an asymptotic estimate for p-adic oscillatory integrals depending on two parameters, which are solutions of pseudo-differential equations of Schrödinger type.

 

https://doi.org/10.18257/raccefyn.28(106).2004.2024

Keywords

p-adic fields | oscillatory integrals | Igusa local zeta functions | Newton polyhedra | pseudo-differential equations
PDF

References

Cluckers R., Cell decomposition and p-adic integration, Ph.D. Thesis 2002, available at http://front.math.ucdavis.edu/math.LO/0301023.

Denef J., Report on Igusa’s local zeta function, Seminaire Bourbaki 1990/1991 (730–744) in Asterisque 201-203 (1991), 359–386.

Denef J., Poles of p-adic complex powers and Newton polyhedra, Nieuw archief voor wiskunde, 13 (1995), 289–295.

Denef J., Hoornaert Kathleen, Newton polyhedra and Igusa local zeta function, To appear in Journal of Number Theory.

Dwork B., Bessel functions as p-adic functions of argument, Duke Math. J. 41 (1974), 711–738.

Igusa Jun-Ichi, An introduction to the theory of local zeta functions, AMS /IP Studies in Advanced Mathematics, v. 14, 2000.

Katz Nicholas M., Exponential sums and differential equations, Princeton University Press, 1990.

Kochubei A. N., Pseudodifferential equations and stochastics over non-archimedean fields, Marcel Dekker, 2001.

Lichtin B. & Meuser D., Poles of a local zeta function and Newton polygons, Compos. Math. 55 (1985), 313–332.

Stein Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, 1993.

Varchenko A., Newton polyhedra and estimation of oscillating integrals, Funct. Anal. Appl. 10 (1976), 175–196.

Vladimirov V. S., Volovich I. V., & Zelenov E. I., p-adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.

Zuniga-Galindo W. A., Igusa’s local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353, (2001), 3193–3207.

Zuniga-Galindo W. A., Local zeta functions and Newton polyhedra, Nagoya Math. J., 172 (2003), 31–58.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0