Abstract
This paper employs combinatorial knot theory to generate an n-butterfly linked to a knot diagram with n crosses, detailing an algorithm and its execution within the Mathematica software.
Keywords
References
Adams, C. C. The Knot Book: An elementary introduction to the Mathematical Theory of Knots. W. H. Freeman and Company-New York, 2001.
Burde, G. and Zieschang, H. Knots, Walter de Gruyter, Berlin-New York, 1985.
Cairns, G. and Elton, D. The Planarity Problem for Signed Gauss Words, Journal of Knot Theory and its Ramifications, Vol. 2, No. 4 (1993) 359-367.
Hilden, M., Montesinos, J., Tejada, D. y Toro, M., Mariposas y 3-Variedades, Festival Académico, dedicado a la memoria del Profesor J. Charris, Universidad Nacional de Colombia, Bogotá, agosto, 2003.
Hilden, M., Montesinos, J., Tejada, D. y Toro, M., Butterflies, Preprint, 2003.
Murasugi, K. Knot Theory and its Applications, Birkhäuser, Boston-Basel-Berlin, 1996.
Rolfsen, D. Knot and Links, Publish or Perish, Inc., 1976.
Tejada, D. Variedades, Triangulaciones y Representaciones, Preprint, 2003.
Thurston, W. Three Dimensional Geometry and Topology, Princeton, NJ, 1997.
Toro, M. Programación en Mathematica con aplicaciones a la Teoría de Nudos, Preprint, 2003.
Toro, M. Clasificación de nudos: Una aproximación computacional. Preprint, 2002.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0