Abstract
We consider general material related to nonstationary iterative methods and we explain the importance of implementing a preconditioning strategy.
Keywords
References
G. Cervantes, Introducción a los precondicionadores, Tesis de Maestría, Universidad Nacional de Colombia, Medellín, 2003.
I. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Compt., 23 (3) (2001), 1050–1051.
D. Kay, D. Loghin & A. Wathen, A preconditioner for steady–state Navier–Stokes equations, SIAM J. Sci. Compt., 24 (1) (2002), 237–256.
J. A. Meijerink & H. A. van der Vorst An iterative solution method for linear systems of which the coefficient matrix is a symmetric m−matrix, Math. Comput. 31 (137) (1977), 148–162.
M. Murphy, G. Golub & A. Wathen, A note on preconditioning for indefinite linear systems. SIAM J. Sci. Compt., 21 (6) (2000), 1969–1972.
National Institute of Standards and Technology, The matrix market. http://math.nist.gov/MatrixMarket.
J. M. Ortega, Numerical Analysis, a Second Course. SIAM, 1990.
G. W. Stewart, Afternotes on Numerical Analysis. SIAM, 1996.
R. Varga, Factorization and normalized iterative methods. IN R. Laner (ed.), Boundary Problems in Differential Equations, University of Wisconsin, Madison, 1960, 12–142.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0