Abstract
In this paper we establish the existence of a solution to a nonlinear Dirichlet problem when the derivative at infinity of the nonlinearity is smaller than the first eigenvalue. The proof relies on a fundamental minimization theorem for functionals derived from the Ekeland variational principle.
References
[Ad-C] H. Aduén and A. Castro, Infinitely Many Non-radial Solutions to a Superlinear Dirichlet Problem, Proc. Amer. Math. Soc., 131 (2003), 835–843.
[Am-Ra] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Anal., 14 (1973), 349–381.
[Br] H. Brezis, Análisis Funcional, Alianza Editorial, Madrid, (1984).
[C1] A. Castro, Métodos de Reducción via Minimax, Primer Simposio Colombiano de Análisis Funcional, Medellín, Colombia, (1981).
[C-C1] A. Castro and J. Cossio, Multiple Radial Solutions for a Semilinear Dirichlet Problem in a ball, Rev. Colombiana Mat., 27 (1993), 15–24.
[C-C2] A. Castro and J. Cossio, Multiple Solutions for a Nonlinear Dirichlet Problem, SIAM J. Math. Anal., 25 (1994), pp. 1554–1561.
[C-C-N1] A. Castro, J. Cossio and J. M. Neuberger, A Sign-Changing Solution for a Superlinear Dirichlet Problem, Rocky Mountain J.M., 27 (1997), 1041–1053.
[C-C-N2] A. Castro, J. Cossio and J. M. Neuberger, On Multiple Solutions of a Nonlinear Dirichlet Problem, Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), 3657–3662.
[C-C-N3] A. Castro, J. Cossio and J. M. Neuberger, A Minmax Principle, Index of the Critical Point, and Existence of Sign-changing Solutions to Elliptic Boundary Value Problems, Electronic Journal of Differential Equations, Vol. 1998 (1998), 1–18.
[C-L1] A. Castro and A. C. Lazer, Applications of a Max-min Principle, Rev. Colombiana Mat., 10 (1976), 141–149.
[C-L2] A. Castro and A. C. Lazer, Critical Point Theory and the Number of Solutions of a Nonlinear Dirichlet Problem, Ann. Mat. Pura Appl., 70 (1979), 113–137.
[Ch] K. C. Chang, Solutions of asymptotically linear operator equations via Morse Theory, Comm. Pure Appl. Math., 34 (1981), 693–712.
[C] J. Cossio, Múltiples soluciones para un problema elíptico semilineal, en Memorias de la III Escuela de verano en Geometría diferencial, ecuaciones diferenciales parciales y análisis numérico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Colección Memorias No. 7, 1995, 53–59.
[C-H] R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume I, New York, John Wiley (1989).
[DF] D. G. De Figueiredo, The Ekeland Variational Principle with Applications and Detour, Tata Institute of Fundamental Research / Springer-Verlag, (1989).
[Ek] I. Ekeland, On the Variational Principle, J. Math. Anal. Appl., 47 (1974), 324–353.
[E] M. Esteban, Multiple Solutions of Semilinear Elliptic Problems in a Ball, J. Differential Equations, 57 (1985), 112–137.
[H] H. Hofer, Variational and Topological Methods in Partially Ordered Hilbert Spaces, Math. Ann., 261 (1982), 493–514.
[Ra] P. Rabinowitz, Minimax methods in critical point theory and applications to differential equations, Conference Series in Mathematics, number 65, American Mathematical Society, Providence (1986).
[Wa] Z. Q. Wang, On a Superlinear Elliptic Equation, Ann. Inst. H. Poincaré Analyse Non Linéaire 8 (1991), 43–57.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0