Coda waves’ tomography for surficial exploration
PDF

Supplementary Files

Figure 1S. Example of original signal (top), the filtered signal between 20 and 40 Hz (middle), and the energy density Aobs(t, r | f) (bottom).
Figure 2S. Synthetic tests (chess model). (a) The original distribution of attenuation areas
Figure 3S. Synthetic test of a pattern of contrasting attenuation in 3D.

How to Cite

Vargas Jimenez, C. A., Pedroza - Rojas, A. O., & Caneva - Rincon, A. (2015). Coda waves’ tomography for surficial exploration. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39(151), 268–279. https://doi.org/10.18257/raccefyn.184

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

This work extrapolates the application of coda-waves’ imaging, in order to determine lateral anomalies of attenuation for surficial targets, and providing experimental elements that justify its use in an economic way with a relatively good resolution. A numerical procedure for the spatial inversion of the attenuation, inside a small region, has been established. The numerical effectiveness of the inversion was evaluated carrying out a field experiment, which detects, based on attenuation contrasts, the presence of a tunnel built in the Colombian Eastern Cordillera. The experimental work allows the validation of the proposed method, and the acquisition of associated information about the geotechnical conditions at the experimental site. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.184
PDF

References

Aki, K. (1969). Analysis of seismic coda of local earthquake as scattered waves. J. Geoph. Res., 74, pp. 615-631.

Aki, K. & Chouet, B. (1975). Origin of coda waves: source, attenuation and scattering effects. J. Geoph. Res. 80, pp. 3322-3342.

Carvajal, C. A. & Vargas, C. A. (2001). Respuesta de sitio de ondas coda en Pereira. Revista Horizontes, V. 4, pp. 63-77.

Crosson, R. S. (1976). Crustal structure modeling of earthquake data, 1. Simultaneous Least Squares Estimation of hypocenter and velocity partameters. J. Geophys. Res., 81, pp. 3036-3046.

Dainty, A. M. (1981). A scattering model to explain seismic Qobservations in the Lithosphere between 1 and 30 Hz. Geophys Research Letters, 8 (11), pp. 1126-1128.

Durán, J. P., Vargas, C. A. & Briceño, L. A. (2003). Tomografía de CODA-Q del Piedemonte Llanero, Colombia. Revista Geofísica, IPGH UNAM, México: V. 58, No. 2, pp. 81-96.

Herrmann, R. (1980). Q estimates using the coda of local earthquakes. Bull. Seism. Soc. Am. 70, pp. 447-468.

Kumar, N., Parvez, I. A. & Virk, H.S. (2005). Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth and Planetary Interiors 151, pp. 243-258.

Lee, W. H., Benett, R. E. & Meagher, K. L. (1972). A method of estimating magnitude of local earthquakes from signal duration. Geol. Survey. Open-File Rep. 28.

Lobo-Guerrero, A. (1992). Geología e Hidrogeología de Santafé de Bogotá y su Sabana. VII Jornadas Geotecnicas de la Ingenieria de Colombia, Bogotá. Londoño, J. M. & Sudo, Y. (2002). A warning model based on temporal changes of coda Q for volcanic activity at Nevado del Ruiz Volcano, Colombia. Bull. Volcanology. 64, pp. 303-315.

Malin, P. E. (1978). A first order scattering solution for modeling lunar and terretrial seismic coda, Ph.D. dissertation, Princeton Universtiy, Princeton New Jersey.Pujades, L. G., Canas, J. A., Egozque, J. J., Puigvi, M. A., Pous, J., Gallart, J., Lana, X. & Casas, A. (1990). Coda Q distribution in the Iberian Peninsula. Geophys. J. Int., 100, pp. 285-301.

Pulli, J. J. (1984). Attenuation of coda waves in New England. Bull. Seism. Soc. Am., V. 74, pp. 1149-1166.

Rautian, T. & Khalturin, V. (1978). The use of the coda for determination of the earthquake source spectrum. Bull. Seism. Soc. Am. V.68, No.4, pp. 923-948.

Sato, H. (1977). Energy propagation including scattering effects. Single isotropic scattering aproximation. J. Phys. Earth., 25, pp. 27-41.

Singh, S. & Herrmann, R. (1983). Regionalization of crustal Coda Q in the continental United States. J. Geophys. Res., V. 88, B1, pp. 527-538.

Snieder, R. (2006). The theory of coda wave interferometry. Pure and Applied geophysics, V. 163, No. 2, pp. 455-473.

Ugalde, A., Vargas, C. A., Pujades, L. G. & Canas, J. A. (2002). Seismic coda attenuation after the Mw = 6.2 Armenia (Colombia) earthquake of 25 January 1999. J. Geophys. Res. 10, 1029/2001GB000197.

Vargas, C. A. (1999). Atenuación de ondas coda en la región central de los Andes de Colombia-Eje Cafetero. Tesina de Máster en Ingeniería Sísmica y Dinámica Estructural. Universidad Politécnica de Catalunya.

Vargas, C. A., Monsalve, H., Bermúdez, M. L & Cuenca, J. (2001). Utilización de redes neuronales para la determinación de respuestas de sitio a partir de ondas Coda: Aplicación para Armenia, Colombia. Revista Geofísica Colombiana, V. 5, pp. 27-31.

Vargas, C. A. & Cuenca, J. C. (2003). Application of neural networks to obtain the site response in. Mexico city. Geofísica Colombiana, V.7, pp.74-78.

Vargas, C. A., Ugalde, A., Pujades, L. & Canas, J. A. (2004). Spatial variation of coda wave attenuation in Noth-Western Colombia. Geophysical Journal International, V.158, No.2, pp. 609-624.

Vargas, C.A. & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 2025-2046, June 2013, doi: 10.1785/0120120328.

Xie, J. & Mitchell, B. J. (1990). A back projection method for imaging large scale lateral variation in Lg coda Q with application to continental Africa. Geophysical Journal, V. 100, pp. 161-181.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2015 Journal of the Colombian Academy of Exact, Physical and Natural Sciences