Photo-activation Heating of Carbon Nanotubes Functionalized with Folic Acid (NTC-AF)
PDF (Español (España))

How to Cite

Martínez O., F. (2014). Photo-activation Heating of Carbon Nanotubes Functionalized with Folic Acid (NTC-AF). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 38, 152–166. https://doi.org/10.18257/raccefyn.161

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Methods for covalent and non-covalent functionalization of single-walled carbon nanotubes (CNTs) with folic acid and their spectroscopic characterization are described. The irradiation of NTC-AF aqueous solutions with IR generates a heating effect that it dependent on the concentration of solution, the beam power and the type of interaction between folic acid and NTC. The control experiments show that the increase in temperature is only due to NTC. Preliminary biological studies indicate an internalization of the bioconjugate in THP-1 and infected cells with Leishmania parasites, showing that the thermal effect generated by the IR illumination can reduce the population of infected cells. © 2014. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.
https://doi.org/10.18257/raccefyn.161
PDF (Español (España))

References

Ahmad A., Kurkina T., Kern K. and Balasubramanian K., 2009. Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. Chem. Phys. Chem. 10:2251–2255.

Atthal S., Thiruvengadathan R., Regev O., 2006. Determination of the concentration of single walled carbón nanotubes in aqueous dispersión using UV-Vis absorption spectroscopy. Anal. Chem. 78 (23):8098-8104.

Ayala B, E., Peña B.Y. G., 2013. Funcionalización covalente de nanotubos de carbono de pared simple con ácido fólico y evaluación de su efecto térmico, Trabajo de grado, Director Fernando Martínez O., Escuela de Química, Facultad de Ciencias, UIS.

Ayala B. E., Peña Y. G., Barbosa O., Torres R., Martínez O. F.,2013. Evaluación del efecto térmico de nanotubos de carbono de pared simple funcionalizados con ácido fólico. Rev. Invest. Univ. Quindío. 1 (24): 107-111.

Bandara N. A., Hansen M. J., and Low P. S., 2014. Effect of Receptor Occupancy on Folate Receptor Internalization. Molecular. Pharmaceutics 11 (3): 1007−1013.

Boca-Farcau S., Potara M., Simon T., Juhem A., Baldeck P., and Astilean S.,2014. Folic Acid-Conjugated, SERS-Labeled Silver Nanotriangles for Multimodal Detection and Targeted Photothermal Treatment on Human Ovarian Cancer Cells. Molecular. Pharmaceutics 11 (2): 391–399.

Burkea A., Ding X., Singh R., Kraft R. A., Levi-Polyachenko N., Rylander M. N., Szot C., Buchanan C., Whitney J., Fisher J., Hatcher H. C., D’Agostino R., Jr., Kock N. D., Ajayan P. M., Carroll D. L., Akman S., Torti F. M., and Torti S. V., 2009. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. PNAS 106 (31): 12897–12902.

Burlaka A., Lukin S., Prylutska S., Remeniak O., Prylutskyy Y., Shuba M., Maksimenko S., Ritter U., Scharff P., 2010. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 32 (1): 48-50.

Castillo J. J., Torres M. H., Molina D. R., Castillo-León J., Svendsen W. E., Escobar P., Martínez O. F., 2012. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered NMR spectroscopy. Carbon 50 (8): 2691–2697.

Castillo J.J., Novoa L.V., Martínez F., Escobar P., 2011. Carbon nanotubes-chitosan in HOS and THP-1 cells. Rev. Univ. Ind. Santander. Salud43 (1): 21–6.

Castillo, J. J., Rindzevicius T., Novoa L. V., Svendsen W. E., Rozlosnik N., Boisen A., Escobar P., Martínez F. and Castillo-Léon J., 2013. Non-covalent conjugates of single-walled carbón nanotubes and folic acid for interaction with cells over-expressing folate receptors. J. Mater. Chem. B. 1: 1475-1481.

Castillo J. J., Rozo C. E., Castillo-León J., Rindzevicius T., Svendsen W. E., Rozlosnik N., Boisen A., Martínez O. F., 2013. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chemical Physics Letters 564: 60–64.

Castillo, John, 2013. Diseño y Preparación de Nanocompuestos Funcionalizados con Ácido Fólico y sus Aplicaciones Biomédicas, tesis doctoral en química, escuela de Química, dirigida por Patricia Escobar R. y Fernando Martínez O., UIS, enero.

Chakravarty P., Marches R., Zimmerman N. S., Swafford A. D.-E., Bajaj P., I. H. Musselman, P. Pantano, Draper R. K., and Vitetta E. S., 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. PNAS 105 (25): 8697– 8702.

Cohen Y., Avram L., and Frish L., 2005. Diffusion NMR Spec-troscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter.

Cho E. S., S. Hong W. and Jo W. H., 2008. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes.Macromol. Rapid Commun. 29 (22): 1798–1803.

Chen H., Chi X., Li B., Zhang M., Ma Y., Achilefu S. and Gu Y., 2014. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. |Biomater. Sci., 2: 996–1006.

Chou H.-T., Wang T.-P., Lee Y., Taia N.-H., Chang H.-Y., 2013. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering C 33 (2): 989–995.

Dresselhauss M., Dresselhaus G., Jorio A., Filho A., Pimenta A., Saito R., 2002. Single Nanotube Raman Spectroscopy. Acc. Chem. Res. 35 (12): 1070-1078.

Elhissi A. M. A., Ahmed W., Hassan I. U., Dhanak V. R., andD’Emanuele A., 2012. Carbon Nanotubes in Cancer Therapy and Drug Delivery. J. of Drug Delivery Volume 2012, Article ID 837327, doi:10.1155/2012/837327

Fisher J., Sarkar S., Buchanan C., 2010. Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation. Cancer Research, 70 (23): 9855-9864.

Galvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres R., 2012.Chemical amination of lipase B from Candida Antarcticais an efficient solution for the preparation of cross linked enzyme aggregates. Process Biochemestry 47 (12): 2373-2378.

Gannon C. J., Cherukuri P., Yakobson B. I., Cognet L., Kanzius J. S., Kittrell C., Weisman R. B., Pasquali M., Schmidt H. K., Smalley R. E., Curley S. A., 2007. Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field. CANCER, Volume 110 (12): 2654-2665.

Graham E. G., MacNeill C. M., Levi-Polyachenko N. H., 2013. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation. J. Nanopart. Res. 15: 1649-1662

Hashida Y., Tanaka H, Zhou S., Kawakami S. , Yamashita F., Murakami T., Umeyama T., Imahori H., Hashida M., 2014. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release 173: 59-66.

Hildebrandt B., Wust P, Ahlers O., Dieing A., Sreenivasa G, Kerner T,Felix R.,Riess H., 2002.The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43 (1): 33–56.

Huang X, El-Sayed IH, Qian W, El-Sayed M.A., 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (6): 2115–2120.

Hussain S., Dosser L., Payne S., Stacy B., Schrandt A., 2011. Fundamental Examination of Nanoparticle Heating Kinetics Upon Near Infrared (NIR) Irradiation. ACS Appl. Mater. Interfaces3: 3971–3980.

Jinno M., Ando Y., Bandow S., Fan J., Yudasaka M., Ijima S., 2006. Raman scattering study for heat-treated carbon nanotubes: The origin of ≈1855cm−1Raman band. Chemical Physics Letters 418 (1-3): 109-114.

Kang B, Yu D. C, Dai Y.D., Chang S.Q., Chen D., Ding Y.T., 2009. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘‘Bomb’’ agents. Small 5 (11): 1292–301.

Kim U., Furtado C., Liu X., Chen G., Eklund P. 2005. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am Chem Soc. 127 (44): 15437-15445.

Koh B., Park J. B., Hou X. M. and Cheng W., 2011. Comparative Dispersion Studies of Single-Walled Carbon Nanotubes in Aqueous Solution. J. Phys. Chem. B, 115 (11): 2627–2633.

Kosuge H., Sherlock S. P., Kitagawa T., Dash R., Robinson J. T., Dai H.; McConnell M. V., 2012. Near Infrared Imaging and Photothermal Ablation of Vascular Inflammation Using Single-Walled Carbon Nanotubes. J. Am. Heart Assoc. 2012: doi: 10.1161/JAHA.112.002568

Levi-Polyachenko N., Merkel E., Jones B., Carroll D., Stewar J. H., 2009. Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes. Molecular. Pharmaceutics 6 (4): 1092-1099.

Liu Z., Davis C., Cai W., He L., Chen X., and Dai H., 2008. Circulation and long-term fate of functionalized, bio-compatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410 –1415.

Loo C., Lowery A, Halas N, West J, Drezek R., 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5 (4): 709 –711.

Madani S., Tan A., Dwek M., Seifalian A., 2012. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine 7: 905-914.

Manthe R., Foy S., Krishnamurthy N., Sharma B., Labhasetwar V., 2010. Tumor Ablation and Nanotechnology. Molecular Pharmaceutics 7 (6): 1880-1898.

Marega R, Aroulmoji V, Bergamin M, Feruglio L, Dinon F, Bianco A., 2010. Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano. 4 (4): 2051-8.

Marega R., Aroulmoji V., Dinon F., Vaccari L., Giordani S., Bianco A., Murano E. and Prato M., 2009. Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. J. Am Chem Soc 131 (25): 9086–909—New Insights, Angew. Chem. Int. Ed. 44 (4): 520– 55.

Moon H., Lee S., Choi H., 2009. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 3 (11): 3707-3713.

Nelson D. J. and Kumar R., 2013. Characterizing Covalently Sidewall-Functionalized Single-Walled Carbon Nanotubes by Using 1H NMR Spectroscopy. J. Phys. Chem. C 117: 14812−14823.

Nikfarjam M, Muralidharan V, Christophi C., 2005. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127: 208–223.

Niu L., Meng L., Lu Q., 2013. Folate-Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells, Macromol Biosci 13 (6): 735–744.

Novoa, L. V., 2012. Actividad de nanotubos de carbono acoplados a ácido fólico contra Leishmania panamensis después de irradiación con luz infrarroja cercana, Trabajo de Maestría en Ciencias básicas de la Escuela de Medicina, dirigida por Patricia Escobar R. UIS.

Pavitra Chakravarty, Radu Marches, Neil S. Zimmerman, Austin D.-E. Swafford, Pooja Bajaj, Inga H. Musselman, Paul Pantano, Rockford K. Draper, and Ellen S. Vitetta, 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes, PNAS 105 (25): 8697– 8702.

Robinson J., Welsher K., Tabakman S., Sherlock S., Wang h., Luong R., Dai H. , 2010. High PerformanceIn VivoNear-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Nano Res. 3 (11): 779-793.

Tong R., Chiang H. H., and Kohane D. S., 2013. Photoswitchable nanoparticles for in vivo cancer chemotherapy. PNAS 110 (47): 19048–19053.

Vardharajula S., Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis V.A, Singh S.R., 2012. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine (7): 5361-74.

WANG H., ZHAO Y-L., and NIE G-J., 2013. Multifunctional nanoparticle systems for combined chemo-and photothermal cancer therapy. Front. Mater. Sci. 7 (2): 118–128.Zhang Y L. X, Tang HM. D, Xie Q. T. L, Yao S, 2013. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces 111C: 224-231.

Wadzanai, C., y Tebello, N., 2010. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon48(10): 2831-2838.

Zhao D., Alizadeh D., Zhang L., W. Liu, Farrukh O., Manuel E., Diamond D. J. and Badie B., 2011. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clin Cancer Res 17 (4): 771-782.

Zhou F.F., Wu S.N., Wu B.Y., Chen W.R., Xing D., 2011. Mitochondria-Targeting Single-Walled Carbon Nanotubes for Cancer Photothermal Therapy, Small 7 (19): 2727–2735.

Zhuang L., Corrine D., Weibo C., Lina H., Xiaoyuan C., and Hongjie D., 2008. Circulation and long-term fate of func-tionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410–1415.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.