Abstract
Recharge estimation allows determining the incidence of climatic changes in the water supply and defining the appropriate pumping rates so that overexploitation in the aquifer does not occur. In this research, we carried out the first spatio-temporal estimation of the potential recharge due to precipitation in the Medellin Dunite, a tropical pseudo-karst system, considered a distant recharge zone of the alluvial aquifers in the Aburra Valley (Colombia). These aquifers are currently being exploited for industrial use, but due to the rapid population growth they could be a future source for human consumption. Two water balance methods were used, the SWB on a daily scale and Schosinsky on a monthly scale. In addition, three different climate scenarios were evaluated: dry year-El Niño, wet year-La Niña, and average year. It was found that recharge is strongly influenced by precipitation and soil texture. Thus, the maximum average values were reported for the Niña year (1597 mm/year), while the minimum values for the Niño year (813.5 mm/year). It was also found that the Schosinsky method underestimates recharge fields by 20% because this is a process that occurs at the scale of events, which can only be seen in daily precipitation records. Despite the differences, the results show the potential of the Medellin Dunite as a recharge area for the alluvial aquifers and the marked dependence of recharge on climatic phenomena such as ENSO.
Keywords
References
Álvarez, J. (1982). Tectonitas Dunita de Medellín, Departamento de Antioquia, Colombia. INGEOMINAS, Medellín, Informe 1896. Anderson, M., Woessner, W.W., Hunt, R. (2015). Applied Groundwater Modeling (Second Ed.). Academic Press. 630 pp. https://doi.org/10.1016/C2009-0-21563-7
Alaska Satellite Facility Distributed Active Archive Center - ASF DAAC. (2015). PALSAR_Radiometric_Terrain_Corrected_high_res; Includes Material © JAXA/METI 2007. https://doi.org/10.5067/Z97HFCNKR6VA
Bastidas, B.D. (2019). Modelo conceptual de la recarga de aguas subterráneas en el nivel somero del sistema hidrogeológico golfo de Urabá, evaluando su magnitud y variabilidad espacio – temporal. Tesis de maestría Universidad de Antioquia Facultad de Ingeniería, Escuela Ambiental. Medellín, Colombia, 205 p.
Bogena, H., Kunkel, R., Montzka, C., Wendland, F. (2005). Uncertainties in the simulation of groundwater recharge at different scales. Advances in Geosciences. 5: 25-30. https://doaj.org/article/042f3e6d2d19461f8e0fe0dc3bc438a1
Bradbury, K.R. & Dripps, W.R. (2010). The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin. Hydrological Processes. 24 (4): 383-392.
Bradbury, K.R., Dripps, W.R., Hankley, C., Anderson, M.P., Potter, K.W. (2000). Refinement of two methods for estimation of groundwater recharge rates. Final project report. 89 p.
Butler, S. (1957). Engineering Hydrology. - Prentice Hall Inc., Estados Unidos, 356 p.
Camacho, C. (2020). Modelo hidrogeológico conceptual del acuífero de la dunita de Medellín, a partir de información secundaria. Tesis de pregrado, Universidad EIA. Medellín, Colombia. 119 p. https://repository.eia.edu.co/handle/11190/2580
Consorcio de Microzonificación Sísmica & Área Metropolitana del Valle de Aburrá -AMVA. (2007). Microzonificación sísmica detallada de los municipios de Barbosa, Copacabana, Sabaneta, La Estrella, Caldas y Envigado (Valle de Aburrá). Medellín. Colombia.
Consorcio POMCAS Oriente Antioqueño, CORNARE, CORANTIOQUIA. (2018). Plan de ordenación y manejo de la cuenca del Río Negro. Medellín. 1200 p.
CPA Ingeniería, CORANTIOQUIA, Área Metropolitana del Valle de Aburrá (AMVA), CORNARE. (2018). Plan de ordenación y manejo de la cuenca del río Aburrá. Medellín. 1500 p.
Cronshey, R., McCuen, R., Miller, N., Rawls, W., Robbins, S., Woodward, D. (1986). Urban Hydrology for Small Watersheds - TR-55 (Second Ed). U.S. Dept. of Agriculture, Soil Conservation Service. Washington. Available in: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf
Custodio, E. (1997). Explotación Racional de las Aguas Subterráneas. Acta Geológica Hispánica. 30: 21-48.
De Vries, J. & Simmers, I. (2002). Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal. 10: 5-17.
Dripps, W.R. (2003). The spatial and temporal variability of groundwater recharge within the Trout Lake basin of northern Wisconsin. University of Wisconsin.
Dripps, W.R. & Bradbury, K.R. (2007). A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeology Journal. 15 (3): 433-444. https://doi.org/10.1007/s10040-007-0160-6
Engott, J.A., Johnson, A.G., Bassiouni, M., Izuka, S.K., Rotzoll, K. (2017). Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the Island of O‘ahu, Hawai‘i. Scientific Investigations Report (Version 1.). https://doi.org/10.3133/sir20155010
Fundación Centro Internacional de Hidrología Subterránea - FCIHS. (2009). Balance Hídrico. Recursos y Reservas. Comisión Docente Curso Internacional de Hidrología Subterránea. Barcelona.
Gleeson, T., Wada, Y., Bierkens, M., van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature. 488: 197-200. https://doi.org/10.1038/nature11295
Healy, R.W. & Cook, P.G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal. 10 (1): 91-109. https://doi.org/10.1007/s10040-001-0178-0
Henao, J.D. & Monsalve, G. (2018). Geological inferences about the upper crustal configuration of the Medellin – Aburra Valley (Colombia) using strong motion seismic records. Geodesy and Geodynamics. 9 (1): 67-76. https://doi.org/10.1016/j.geog.2017.06.005
Herrera, J. (2003). Carso de alta montaña en Santa Elena; implicaciones hidrológicas e hidrogeológicas en el Valle de Aburrá. Medellín. Tesis de maestría. Facultad de Minas. Sede Medellín. Universidad Nacional de Colombia.
Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (2010). Estudio nacional del agua 2010. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá. Colombia. 421 p.
Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (2015). Estudio nacional del agua 2014. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá. 496 p.
Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (2019). Estudio nacional del agua 2018. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá. 493 p.
Jasechko, S. & Perrone, D. (2021). Global groundwater wells at risk of running dry. Science. 372: 418-421.
Johnson, A.G., Engott, J.A., Bassiouni, M., Rotzoll, K. (2018). Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai`i, 1978-2007. Scientific Investigations Report (Version 1). https://doi.org/10.3133/sir20145168
Lerner, D.N., Issar, A.S., Simmers, I. (1990). Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge. IAH International Contributions to Hydrogeology, 8, Taylor and Francis, Balkema, Rotterdam.
Linsley, R., Kohler, M., Paulus, L. (1958). Hydrology for engineers. McGraw Hill. New York. 340 p. Mair, A., Hagedorn, B., Tillery, S., El-Kadi, A.I., Westenbroek, S., Ha, K., Koh, G.W. (2013).
Temporal and spatial variability of groundwater recharge on Jeju Island, Korea. Journal of Hydrology. 501: 213-226. https://doi.org/https://doi.org/10.1016/j.jhydrol.2013.08.015
Patiño-Rojas, S.M., Jaramillo, M., Espinosa-Espinosa, C.A., Arias-Lopez, M.F. (2021). Preferential groundwater flow directions in a pseudokarst system in Colombia, South America. Journal of South American Earth Sciences, volume 112, part 1 (103572). https://doi.org/10.1016/j.jsames.2021.103572
Ruiz, L., Varma, M.R.R., Kumar, M.S.M., Sekhar, M., Maréchal, J.C., Descloitres, M., Braun, J.J. (2010). Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process. Journal of Hydrology. 380 (3-4): 460-472. https://doi.org/10.1016/j.jhydrol.2009.11.020
Rushton, K.R. & Ward, C. (1979). The estimation of groundwater recharge. Journal of Hydrology. 41: 345-361.
Saxton, K.E. & Rawls, W.J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal. 70 (5): 1569-1578. https://doi.org/10.2136/sssaj2005.0117
Scanlon, B.R., Healy, R.W., Cook, P.G. (2002). Choosing appropriate technique for quantifying groundwater recharge. Hydrogeology Journal. 10: 18-39. https://doi.org/10.1007/s10040-0010176-2
Schosinsky, G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central. 34-35: 13-30. https://doi.org/10.15517/rgac.v0i34-35.4223
Schosinsky, G. & Losilla, M. (2000). Modelo analítico para determinar la infiltración con base en la lluvia mensual. Revista Geológica de América Central. 23: 43-55.
Solingral S.A. & Alcaldía de Medellín. (2011). Modelo hidrogeológico de la ladera suroriental de Medellín. Cuencas altas de las quebradas la presidenta y La Sanín. Medellín.
Taylor, R., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Treidel, H. (2013). Ground water and climate change. Nature Clim Change. 3: 322-329. https://doi.org/10.1038/nclimate1744
Thornthwaite, C.W., Mather, J.R. (1957). Instructions and Tables for Computing Potential Evapotranspiration and Water Balance. Climatology. 10: 185-311.
Turkeltaub, T., Kurtzman, D., Bel, G., Dahan, O. (2015). Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. Journal of Hydrology. 522: 618-627. https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.01.026
Universidad de Antioquia (UdeA) & Área Metropolitana del Valle de Aburrá (AMVA). (2016). Plan de manejo ambiental del acuífero de la cuenca del río Aburrá. Medellín. 630 p.
Universidad Nacional de Colombia (UNAL) & Área Metropolitana del Valle de Aburrá (AMVA). (2008). Actualización del inventario de captaciones de agua subterránea. Medellín.
Vélez, M.V. (2011). Hidráulica de aguas subterráneas. Facultad de Minas, Escuela de Geociencias y Medio Ambiente, UniversidadNacional. 414 p.
Westenbroek, S.M., Engott, J.A., Kelson, V.A., Hunt, R.J. (2018). SWB Version 2.0 — A Soil-Water-Balance Code for Estimating Net Infiltration and Other Water-Budget Components. U.S. Geological Survey Techniques and Methods, Book 6, Chap. A59, 118p.
Westenbroek, S.M., Kelson, V.A., Dripps, W.R., Hunt, R.J., Bradbury, K.R. (2010). SWB — A Modified Thornthwaite-Mather Soil-Water- Balance Code for Estimating Groundwater Recharge. U.S. Geological Survey, Techniques and Methods, 6-A31, 52 p. https://doi.org/10.3133/tm6A31
Wittenberg, H., Aksoy, H., Miegel, K. (2019). Fast response of groundwater to heavy rainfall. Journal of Hydrology. 571: 837-842. https://doi.org/10.1016/j.jhydrol.2019.02.037
Woodward, D.E., Hawkins, R.H., Jiang, R., Hjelmfelt, A.T., Van Mullem, J.A., Quan, Q. (2003). Runoff curve number method: examination of
he initial abstraction ratio. American Society of Civil Engineers (Ed.), World Water and Environmental Resources Congress, Philadelphia, pp. 1-16.
World Water Assessment Programme –WWAP. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019: No dejar a nadie atrás. París.
Xie, Y., Cook, P.G., Simmons, C.T., Partington, D., Crosbie, R., Batelaan, O. (2017). Uncertainty of groundwater recharge estimated from a water and energy balance model. Journal of Hydrology. 561: 1081-1093. https://doi.org/10.1016/J.JHYDROL.2017.08.010.
Yenehun, A., Walraevens, K., Batelaan, O. (2017). Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia. Journal of African Earth Sciences. 134: 198-212. https://doi.org/10.1016/j.jafrearsci.2017.06.006
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales