Abstract
Oils spills cause aquatic pollution generating serious environmental problems. In the present study, we assessed the aquatic environmental risk of crude oil by determining lethal and sublethal effects in Lemna minor, Daphnia magna, and Danio rerio. We determined the toxicity of total petroleum hydrocarbons (TPH) establishing the water-accumulated fractions of petroleum. Bioassays were evaluated using a 6 x 4 randomized complete block design (RCBD) with five concentrations plus control and four repetitions. We evaluated the dry weight and chlorosis in L. minor, the mortality and immobility in D. magna, and the hypoactivity, bottom scape, and hypoventilation in D. rerio. In the results, we considered the differences (p<0.05) between concentrations and the control. The concentration at which no effect from exposure to the contaminant was observed (NOEC) was <0.4 and 3.22 mg/L for chlorosis and dry weight in L. minor. In the case of water fleas, we obtained a median effective concentration for immobility (EC50-48h) of 2.74 mg/L and a median lethal concentration for mortality (LC50-48h) of 6.22 mg/L. For fish bioassays, the NOEC and the lowest concentration at which an effect was observed (LOEC) of the hypoactivity parameter were 14.28 and 28.61 mg/L, respectively. The bottom scape effect occurred in 100% of the fish at 3.58 mg/L. As for hypoventilation, the NOEC and LOEC were 7.15 and 14.31 mg/L measured at 96 h. The decreasing ecotoxicity order was as follows: L. minor (<0.40 mg/L – chlorosis at 168 h) > D. magna (1.61 mg/L – immobility at 48 h) > D. rerio (<3.58 mg/L – bottom scape at 96 h). The risk quotient was higher than 1, which evidenced the environmental aquatic risk.
Keywords
References
Almeda, R., Hyatt, C., Buskey, E.J. (2014). Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicol. Environ. Saf. 106: 76-85.
Arfsten, D. P., Schaeffer, D. J., Mulveny, D. C. (1996). The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review. Ecotoxicol. Environ. Saf. 33: 1-24.
Avila, T.R., Bersano, J.G.F., Fillmann, G. (2010). Lethal and sub-lethal effects of the water-soluble fraction of a light crude oil on the planktonic copepod Acartia tonsa. J. Braz. Soc. Ecotoxicol. 5: 19-25.
Barros, I.T., Ceccon, J.P., Glinski, A., Liebel, S., Grötzner, S.R., Ferreira, M.A., Benedito, E., Feijó, C., Filipak, F., Oliveira, C.A. (2017). Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp. Environ. Sci. Pollut. Res. 24: 16228-16240.
Becerra, S., Paichard, E., Sturma, A., Maurice, L. (2013). Vivir con la contaminación petrolera en el Ecuador: percepciones sociales del riesgo sanitario y capacidad de respuesta. Revista Lider. 23: 102-120.
Berrojalbiz, N., Lacorte, S., Calbet, A., Saiz, E., Barata, C., Dachs, J. (2009). Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ. Sci. Technol. 43: 2295-2301.
Blewett, T. A., Delompré, P. L. M., Glover, C. N., Goss, G. G. (2018). Physical immobility as a sensitive indicator of hydraulic fracturing fluid toxicity towards Daphnia magna. Sci. Total Environ. 635: 639-643.
Blinova, I., Kanarbik, L., Sihtmäe, M., Kahru, A. (2016). Toxicity of water accommodated fractions of Estonian Shale fuel oils to aquatic organisms. Arch. Environ. Contam. Toxicol. 70: 383-391.
Bobra, A.M., Shiu, W.Y., Mackay, D., Goodman, R.H. (1989). Acute toxicity of dispersed fresh and weathered crude oil and dispersants to Daphnia magna. Chemosphere. 19: 1199-1222.
Bravo, E. (2007). Los impactos de la explotación petrolera en ecosistemas tropicales y la biodiversidad. Acción ecológica. 24: 35-42.
Calderón-Delgado, I.C., Mora-Solarte, D.A., Velasco-Santamaría, Y.M. (2020). Respuestas fisiológicas y capacidad antioxidante de Chlorella vulgaris (Chlorellaceae) expuesta a fenantreno. Acta biol. Colomb. 25: 225-234.
Campos, L.A., Cariello, F.A., Simões, L.N., Paulino, M.G., Vargas, T.S., Fernandes, M.N., Scherer, R., Chippari-Gomes, A.R. (2017). Water-soluble fraction of petroleum induces genotoxicity and morphological effects in fat snook (Centropomus parallelus). Ecotoxicol. Environ. Saf. 144: 275-282.
Claireaux, G., Quéau, P., Marras, S., Le Floch, S., Farrell, A. P., Nicolas-Kopec, A., Lemaire, P., Domenici, P. (2018). Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost Fish. Environ. Toxicol. Chem. 37: 854-859.
Cleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 142: 185-194.
Djomo, J.E., Garrigues, P., Narbonne, J.F. (1996). Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Brachydanio Rerio). Environ. Toxicol. Chem. 15: 1177-1181.
Duesterloh, S., Short, J.W., Barron, M.G. (2002). Photoenhanced toxicity of weathered Alaska North slope crude oil to the calanoid copepods Calanus marshallae and Metridia okhotensis. Environ. Sci. Technol. 36: 3853-3959.
Edema, N.E., Okoloko, E.G., Agbogidi, O.M. (2007). Physico-chemical characteristics of the water-soluble fraction of Ogini well-head crude oil and the effects on Pristia stratiotes Linn (Water lettuces). Am. Eurasian. J. Agric. Environ. Sci. 2: 633-638.
Edema, N.E. & Okoloko, E.G. (2008). Composition of the water soluble fraction (WSF) of Amukpe well-head crude oil before and after exposure to Pristia stratiotes L. Res. J. App. Sci. 3: 143-146.
Ekanem, A.P., Asuquo, F.E., Ndick, E.J. (2011). Toxicity of crude oil to fresh water shrimp, Macrobrachium macrobrachion and Macrobrachium vollenhovenii from Nigerian coastal water. Bull. Environ. Contam. Toxicol. 86: 394-397.
Eshagberi, G.O. (2017). Toxic effects of water-soluble fractions of crude oil, diesel and gasoline on Ceratophyllum Demersum. International Journal of Health and Medicine. 2: 6-9.
Fekete-Kertész, I., Kunglné-Nagy, Z., Gruiz, K., Magyar, A., Farkas, E., Molnár, M. (2015). Assessing toxicity of organic aquatic micropollutants based on the total chlorophyll content of Lemna minor as a sensitive endpoint. Period. Polytech. Chem. Eng. 59: 262-271.
Fekete-Kertész, I., Piszmán, D., Molnár, M. (2017). Particle size and concentration dependent ecotoxicity of nano- and microscale TiO2 —Comparative study by different aquatic test organisms of different trophic levels. Water Air Soil Pollut. 228: 245.
Flores, M.A., Torras, S., Téllez, R. (2004). Medidas de mitigación para uso de suelos contaminados por derrames de hidrocarburos en infraestructura de transporte terrestre (Publicación técnica N°257). Secretaría de comunicaciones y transportes instituto mexicano del transporte. Fecha de consulta: agosto de 2018. Disponible en: https://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt257.pdf
Gonçalves, R., Scholze, M., Ferreira, A.M., Martins, M., Correia, A.D. (2008). The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ. Res. 108: 205-213.
Ha, H., Park, K., Kang, G., Lee, S. (2019). QSAR study using toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbon (PAHs). Ecotoxicology. 28: 333-342.
Holth, T.F., Eidsvoll, D.P., Farmen, E., Sanders, M.B., Martínez-Gómez, C., Budzinski, H., Burgeot, T., Guilherminog, L., Hylland, K. (2014). Effects of water accommodated fractions of crude oils and diesel on a suite of biomarkers in Atlantic cod (Gadus morhua). Aquat. Toxicol. 154: 240-252.
Hsu, C.S. & Robinson, P.R. (2019). Chemical Composition. En C.S. Hsu, P.R. Robinson (Ed.), Petroleum science and technology (pp. 39-56). Cham, Suiza: Springer.
Huang, X.D., Dixon, D.G., Greenberg, B.M. (1993). Impacts of uv radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem. 12: 1067-1077.
Iannacone, J., Alvariño-Flores, L., Paredes-Espinal, C., Ayala-Oroya, H. (2012). Toxicidad aguda y crónica de la quinoleína fenólica sobre la pulga del agua Daphnia magna. Biologist (Lima). 10: 24-33.
Lari, E., Abtahi, B., Seyed, M., Mohaddes, E., Doving, K.D. (2015a). The effect of sublethal concentrations of the water‐soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (Yakovlev, 1870). Environ. Toxicol. Chem. 34: 1826-1832.
Lari, E., Abtahi, B., Hashtroudi, M.S. (2015b). The effect of the water soluble fraction of crude oil on survival, physiology and behaviour of Caspian roach, Rutilus caspicus (Yakovlev, 1870). Aquat. Toxicol. 170: 330-334.
Leadley, T., McLeod, A., Johnson, T., Heath, T., Drouillard, K. (2015). Uncovering adaptive versus acclimatized alterations in standard metabolic rate in Brown Bullhead (Ameiurus nebulosus). Can. J. Fish. Aquat. Sci. 73: 973-981.
Lopes, A., Da Rosa-Osman, S.M., Fernandez M.T. (2009). Effects of crude oil on survival, morphology, and anatomy of two aquatic macrophytes from the Amazon floodplains. Hidrobiología. 636: 295-305.
Martínez-Jerónimo, F., Villaseñor, R., Ríos, G., Espinosa-Chávez, F. (2005). Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude Oil on Daphnia magna (Crustacea: Anomopoda). Arch. Environ. Contam. Toxicol. 48: 444-449.
Ministerios de Ambiente-MINAM. Decreto Supremo N° 004-2017 (7 de junio de 2017). Aprueban estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias. Diario Oficial El Peruano, 7 de junio de 2017.
Müller, J.B., Melegari, S.P., Perreault, F., Matias, W.G. (2019). Comparative assessment of acute and chronic ecotoxicity of water soluble fractions of diesel and biodiesel on Daphnia magna and Aliivibrio fischeri. Chemosphere. 221: 640-646.
Ndimele, P.E. (2011). Acute toxicity of Nigerian crude oil (Bonny Light) to Desmocaris trispinosa (Crustacea, Palaemonidae). AACL. Bioflux. 4: 606-610.
Neff, J. M., Ostazeski, S., Gardiner, W., Stejskal, I. (2000). Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. Environ. Toxicol. Chem. 19: 1809-1821.
OCDE. (2004). Guideline for testing of Chemicals. Test No. 202: Daphnia sp. Acute Immobilisation Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www.oecdilibrary. org/docserver/9789264069947-en.pdf?xpires=1621114445&id=id&accname=guest&checksum=784CB027CAFE3363FE66D15BAAA3B9C6
OCDE. (2006). Guideline for testing of Chemicals. Test No. 221: Lemna sp. Growth Inhibition Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www.oecd-ilibrary. org/docserver/9789264016194-en.pdf?expires=1621114790&id=id&accname=guest&checksum=9EAE42390B8516E21F87321CEB26DCCF
OCDE. (2011). Manual for the Assessment of Chemicals. Organización para la Cooperación y el Desarrollo Económicos. Fecha der consulta: 21 de agosto de 2019. Disponible en: http://www.oecd.org/chemicalsafety/risk-assessment/49188998.pdf
OCDE. (2018). Guideline for testing of Chemicals. Test No. 203: Draft revised version. Fish, Acute Toxicity Test. Fecha de consulta: entre marzo y julio de 2019. Disponible en: https://www. oecd.org/chemicalsafety/testing/draft-revised-test-guideline-203-fish-acute-toxicity-test.pdf
Oliveira, I.B., Groh, K.J., Schönenberger, R., Barroso, C., Thomas, K.V., Suter, M. J.F. (2017). Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Aquat. Toxicol. 191: 164-174.
Omar-Ali, A., Hohn, C., Allen, P.J., Rodríguez, J., Petrie-Hanson, L. (2015). Tissue PAH, blood cell and tissue changes following exposure to water accommodated fractions of crude oil in alligator gar, Atractosteus spatula. Mar. Environ. Res. 108: 33-44.
Parmar, T.K., Rawtani, D., Agrawal, Y.K. (2016). Bioindicators: the natural indicator of environmental pollution. Front. Life. Sci. 9: 110-118.
Philibert, D.A., Philibert, C.P., Lewis, C., Tierney, K.B. (2016). Comparison of diluted bitumen (Dilbit) and conventional crude oil toxicity to developing zebrafish. Environ. Sci. Technol. 50: 6091-6098.
Picone, M., Distefano, G.G., Marchetto, D., Russo, M., Vecchiato, M., Gambaro, A., Barbante, C., Ghirardini, A.G. (2021). Fragrance materials (FMs) affect the larval development of the copepod. Acartia tonsa: An emerging issue for marine ecosystems. Ecotoxicol. Environ. Saf. 215: 112146.
Salaberria, L., Brakstad, O.G., Olsen, A.J., Nordtug, T., Hansen, B. H. (2014). Endocrine and AhR-CYP1A pathway responses to the water-soluble fraction of oil in zebrafish (Danio rerio Hamilton). Journal of Toxicology and Environmental Health, Part A. 77: 506-515.
Sekomo, C.B., Rousseaua, D.P.L., Saleh, S.A., Lens, P.N.L. (2012). Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol. Eng. 44: 102-110.
Silva, A., Santos, L.H., Antão, C., Delerue-Matos, C., Figueiredo, S.A. (2017). Ecotoxicological evaluation of chemical indicator substances present as micropollutants in laboratory wastewaters. Glob. Nest J. 19: 94-99.
Sobrino-Figueroa, A. (2018). Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res. 25: 13283-13291.
Sørensen, L., Sørhus, E., Nordtug, T., Incardona, J.P., Linbo, T.L., Giovanetti, L., Karlsen, Ø., Meier, S. (2017). Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE. 12: e0180048.
Turja, R., Sanni, S., Stankevičiūtė, M., Butrimavičienė, L., Devier, M.H., Budzinski, H., Lehtonen, K.K. (2020). Biomarker responses and accumulation of polycyclic aromatic hydrocarbons in Mytilus trossulus and Gammarus oceanicus during exposure to crude oil. Environ. Sci. Pollut. Res. 27: 15498-15514.
Wang, Y., Shen, C., Wang, C., Zhow, Y., Gao, D., Zuo, Z. (2018). Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish Danio rerio, and the mechanisms involved. Chemosphere. 191: 7-16.
Wernersson, A. (2004). Aquatic ecotoxicity due to oil pollution in the Ecuadorian Amazon. Aquat. Ecosyst. Health Manag. 7: 127-136.
Wilson, K., Ralph, P. (2008). A comparison of the effects of Tapis crude oil and dispersed crude oil on subtidal Zostera capricorni. IOSC Proceedings. 2008: 859-864.
Xu, G., Zhang, L., Yu, W., Sun, Z., Guan, J., Zhang, J., Lin, J., Zhou, J., Fan, J., Murugadoss, V., Guo, Z. (2020). Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology. 31: 225402.
Yang, S., Ye, R., Han, B., Wei, C., Yang, X. (2014). Ecotoxicological effect of nano-silicon dioxide particles on Daphnia magna. Integr. Ferroelectr. 154: 64-72.
Yu, X., Xu, C., Liu, H., Xing, B, Chen, L., Zhang, G. (2015). Effects of crude oil and dispersed crude oil on the critical swimming speed of puffer fish, Takifugu rubripes. Bull. Environ. Contam. Toxicol. 94: 549-553.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales