Abstract
We report the fabrication and characterization of activated carbon and carbon nanoplatelets obtained from Guadua angustifolia Kunth for their application in flexible electronics. The activated carbon samples were obtained in a controlled pyrolysis system under nitrogen atmosphere at a temperature of 573 K for one hour, and the nanoplatelets at 973 K for one hour. The charcoal was activated using potassium hydroxide and sodium hydroxide at an activation temperature of 973 K. The nanoplatelets samples were obtained by mechanical grinding in a mortar, and cavitation for six hours. The activated carbon samples were characterized by adsorption isotherms, and we found a surface area of 408.0 m²/g and 308.9 m²/g for the carbon activated with sodium hydroxide and potassium hydroxide, respectively. X-ray diffraction was performed and the presence of electrolytes remaining from the activation process was determined. Scanning electronic microscopy images showed the porous carbon structure and allowed to identify the presence of the remaining electrolyte salts. Cyclic voltammetry was performed and a maximum specific capacitance of 111 F/g was determined. The activated carbon was used in the manufacture of a flexible supercapacitor, achieving a capacitance of 7.9 mF. The nanoplatelets were characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy techniques, corroborating the presence of oxidized graphite nanoplatelets with thicknesses below 13 nm; using current-voltage curves we found a nonlinear behavior attributed to the percolation effects of the electric charge carriers. These results suggest that activated carbon and carbon nanoplatelets samples are excellent candidates for electronic applications. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat.References
J., Taberna, P. L., Simon, P., Fauvarque, J. F., Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources. 101: 109-116. Recuperado de http://www.sciencedirect.com science/article/pii/S0378775301007078
Guerrero- onzález, D.R. (2011). Desarrollo de materiales nano-estructurados basados en óxidos de manganeso con uso potencial en electrodos para dispositivos de almacenamiento de energía (Tesis de maestría). Universidad Nacional de Colombia. Manizales.
Geng, Y., Wang, S. J., Kim, J. K. ( 2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science. 336: 592-598. Recuperado de http://www.sciencedirect.com/science/article/pii/S0021979709004147
He L. X. & Tjong S. C. (2013). Zener tunneling in conductive graphite/epoxy composites: Dielectric breakdown aspects. eXPRESS Polymer Letters. 7(4): 375–382.
Jayalakshmi, M. & Balasubramanian, K. (2008). Simple capacitors to supercapacitors - An overview. International Journal Electrochemical Science. 3: 1196-1217. Recuperado de http://www.electrochemsci.org/papers vol3/3111196.pdf
Lesme J. R. (2013). Pirolisis de biomasa. Experiencias y apli-caciones. Manuscrito en preparación. Centro de Estudios de Eficiencia Energética. Recuperado de http://cengidoc.cengican.org/Portal/SubOtrasAreas Cogeneracion/Presentaciones/PirolisisBiomasa.pdf
Liu, Y., Zhao, Y., Zhang, Y. (2014). One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sensors and Actuators B. 196: 647-652. Recuperado de http://www.sciencedirect.com/science/article pii/S0925400514002019
Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B. 179: 32-45. Recu-perado de http://www.sciencedirect.com science/article/pii/S0925400512011938
Pandolfo, A. G. & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of power sources.157: 11-27. Recuperado de http://www.sciencedirect.com/science/article pii/S0378775306003442
Prías Barragán, J. J., Rojas González, C. A., Echeverry Montoya, N. A., Fonthal, G., Ariza-Calderón, H. (2011). Identificación de las variables óptimas para la obtención de carbón activado a partir del Precursor Guadua angustifolia Kunth. Revista de la Academia Colombiana de Ciencias Exactas y de la Tierra. 35 (135): 157-166.
Rozploch, F., Patyk, J., Stankowski, J. (2007). Graphenes bonding forces in graphite. Acta Physica Polonica A. 112 (3): 557-562,Recuperado de http://przyrbwn.icm.edu.pl/APP/PDF/112/a112z308.pdf
Sangwan, V. K., Southard, A., Moore, T. L., Ballarotto, V. W., Hines, D. R., Fuhrer, M. S., Williams, E. D. (2011). Transfer printing approach to all-carbon nanoelectronics. Microelectronic Engineering. 88: 3150–3154.
Wei, L., & Yushin, G. (2012). Nanostructured activated carbons from natural precursors for electrical double layer capac-itors. Nano Energy. 1: 552-565. Recuperado de http://www.sciencedirect.com/science/article/pii/S2211285512001097
Wen-Pin S., Li-Chi, T., Chian-Wen, L., Ming-Yuan, C., Chienliu, C., Yao-Joe, Y., Kuang-Chao, F. (2010). Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors. 10: 3597-3610.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2015 Journal of the Colombian Academy of Exact, Physical and Natural Sciences