Influencia de la temperatura en la brecha energética de nanoplaquetas de oxido de grafeno reducido según el modelo de Varshni
PDF (English)

Cómo citar

Prías-Barragán, J. J. (2023). Influencia de la temperatura en la brecha energética de nanoplaquetas de oxido de grafeno reducido según el modelo de Varshni. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(185), 807–821. https://doi.org/10.18257/raccefyn.2008

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se estimó la dependencia de la temperatura con la energía de banda prohibida (Eg(T)) en nanoplaquetas individuales de grafeno oxidado reducido (rGO) obtenidas de bambú. Las rGO se sintetizaron mediante el método de la doble descomposición térmica en un sistema de pirolisis, bajo una atmósfera de nitrógeno controlada y temperatura de carbonización fija en TCA = 973 K. Para la caracterización eléctrica de las rGO se empleó el método de curvas I-V en cuatro contactos eléctricos con nanocables de Pt depositados mediante el sistema de deposición inducida por haces enfocados de electrones e iones. La Eg(T) se estimó usando medidas de resistividad eléctrica tomadas a temperaturas que variaban entre los 30 y los 290 K. Las rGO exhibieron una Eg(T) descrita principalmente por el modelo de Mott de salto de rango variable tridimensional (VRH-3D). La Eg(T) se analizó considerando los modelos fenomenológicos de Varshni, Bose-Einstein, Magnoogian-Wooley, Viña, et al., y Päsler. Se encontró que el modelo de Varshni describía adecuadamente el comportamiento experimental de la Eg(T), con el valor de Eg(T = 0 K) extrapolado a 0,292 eV y los parámetros de Varshni de α = 6,70 x 10-4 eV/K y β = 33,62 K. Estos valores concuerdan con el orden de magnitud de los coeficientes de Varshni reportados para otros semiconductores de banda prohibida estrecha como el InAs y el InSb. Asimismo, se encontró que la presencia de puentes de hidroxilo en la rGO modificaba la longitud de los enlaces carbono-carbono, lo cual domina la respuesta eléctrica, como se preveía y ha sido reportado previamente al emplear cálculos de primeros principios vía la teoría del funcional de la densidad (DFT). Estos resultados sugieren que las rGO pueden ser excelentes materiales para el desarrollo de la electrónica avanzada de sensores y dispositivos.

https://doi.org/10.18257/raccefyn.2008

Palabras clave

Grafeno oxidado reducido | Nanoplaquetas | Energía de banda prohibida | HR-TEM
PDF (English)

Citas

Abbas Z, Soomro, R. A., Kalmar, N. H., Mawada, T., Willander, M., Karakus, S. K., Ayben K. (2020). In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker. Sensors, 20, 148 1-10.

Amir Faiz, M.S., Che Azurahanim, C.A., Yazid, Y., Suriani, A.B., Siti Nurul, A. M. (2020). Preparation and characterization of graphene oxide from tea waste and its photocatalytic application of TiO2/graphene nanocomposite. Journal Material Research Express, 7, 015613 1-9.

Arango Hoyos, B. E., Franco Osorio, H., Valencia Gómez, E. K., Guerrero Sánchez, J., Del Canto Palominos, A. P., Larrain, F. A, Prías-Barragán, J. J. (2023). Exploring the capture and desorption of CO2 on graphene oxide foams supported by computational calculations. Nature: Science Reports, 13, 14476 1-15.

Arias-Niquepa, R. A., Prías-Barragán, J. J., Ariza-Calderón, H., Rodríguez-García, M. E. (2019). Activated carbon obtained from bamboo: Synthesis, morphological, vibrational, and electrical properties and possible temperature sensor. Physical Status Solidi A, 2019, 1800422 1-11.

Benevidesa, A.P., Campos, A.R., Vieira, L.C., Perez, C. dos Reis., Vargas, C.D. (2020). Reduced Graphene Oxide-Zinc Oxide Flower-Like Composite for Glass-Ionomer Materials Reinforcement. Materials Research, 23, e20190580 1-9.

Geim,A.K., Novoselov, K.S. (2007). The rise of graphene. Nat. Mater, 6, 183-191.

Geng, L., Wu, S., Zou, Y., Jia, M., Zhang, W., Yan, W., Liu, G. (2014). Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol. J. Colloid Interface Sci, 421, 71-77.

Geng, Y., Wang, S. J., Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal Colloid Interface Science, 336, 592-598.

Ghosh, R., Singh, A., Santra, S., Ray, S. K., Chandra, A., Guha, P. K. (2014). Highly sensitive largearea multi-layered graphene-based flexible ammonia sensor. Sens. Actuators B, 205, 67-73.

Grande, L., Chundi, V.T., Wei, D., Bower, C., Andrew, P., Ryh€anen, T. (2012). Graphene for energy harvesting/storage devices and printed electronics. Particuology, 10, 1-8.

Gregory Thien S H, Pandikumar, A., Nay Ming, H., Hong Ngee, L. (2014). Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Nature: Science Reports, 4, 5044 1-8.

Gross, K., Prías-Barragán, J. J., Sangiao, S., Lajaunie, L., Arenal, R., Ariza-Calderón, H., Prieto, P. (2016). Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: effect of the oxygen content. Nanotechnology, 27, 365708 1-10.

He, L. X., Tjong, S. C. (2013). Zener tunneling in conductive graphite/epoxy composites: Zener tunneling in conductive graphite/epoxy composites: Dielectric breakdown aspects. Express Polymers Letters, 7, 375-382.

He, Z., Xia, H., Zhou, X., Yang, X., Song,Y., Wang, T. (2011). Raman study of correlation between defects and ferromagnetism in graphite. J. Phys. D: Appl. Phys, 44, 085001-9.

Hoyos-Ariza, F. A., Prías-Barragán, J, J., Galván, D. H., Guerrero-Sánchez, J., Ariza-Calderón, H. (2023). Graphene nanostructures functionalization: Hydrogen bonds and oxide coverage effect. Materials Today Communications, 36, 106861 1-11.

Hyo, J. K., Sung-Min, L., Yoon-Suk, O., Young-Hwan, Y., Young Soo, L., Dae, Ho Y., Changgu, L., Jong-Young, K., Rodney, S. (2014). Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix. Nature: Science Report, 4, 5176 1-10.

ISO Technical specification (2008). Nanotechnologies — Terminology and definitions for nanoobjects — Nanoparticle, nanofibre and nanoplatelet. ISO/TS 2008, 27687:2008(E).

Jia, G., Zhang, W., Jin, Z., An, W., Gao, Y., Zhang, X., Liu, J. (2014). Electrocatalytically Active MOF/Graphite Oxide Hybrid for Electrosynthesis of Dimethyl Carbonate. Electrochimica Acta, 144, 1-6.

Jiang, H., Chen, P., Zhang, W., Luo, S., Luo, X., Peter, C. Au., Li, M. (2014). Deposition of nano Fe3O4@mZrO2 onto exfoliated graphite oxide sheets and its application for removal of amaranth. Appl. Surf. Sci, 317, 1080-1089.

Kajen, R. S., Chandrasekhar, N., Pey, K. L., Vijila., C, Jaiswal M., Saravanan, S., Andrew M H Ng., Wong, C. P., Loh, K.P. (2013). Trap Levels in Graphene Oxide: A Thermally Stimulated current study. ECS Solid State Letters, 2, M17-M19.

Kigozi, M., Koech, R. K., Kingsley, O., Ojeaga, I., Tebandeke, E., Kasozi, G. N., Onwualu, A. P. (2020). Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications. Results in Materials, 7, 100113 1-12.

Kim, M., Kang, G. H., Park, H. W., Park, Y. B., Park, Y. H., Yoon, K. H. (2012). Design, Manufacturing, and Characterization of High-Performance Lightweight Bipolar Plates Based on Carbon Nanotube-Exfoliated Graphite Nanoplatelet Hybrid Nanocomposites. Journal of Nanomaterials, 159737, 1-8.

Krystek, W., Malikova, L., Pollak, F. H. (1995). Contactless electroreflectance study of temperature dependence of fundamental band gap of ZnSe. Acta Physica Polonica A, 88 (5), 1013-1017.

Kuzemsky, A. L. (2013). Unconventional and exotic magnetism in carbon-based structures and related materials. Journal of Modern Physics B, 27, 1330007 1-40.

Kyzas G. Z, Bikiaris D. N., Deliyanni E. A. (2014). Advanced low-swelling chitosan/graphite oxide-based biosorbents. Mater. Lett. 128, 46-49.

Li, Fenfen., Linyu, L., Yunxuan, W. (2020). A Review on the Contemporary Development of Composite Materials Comprising Graphene/Graphene Derivatives. Advances in Materials Science and Engineering, 2020, 1-16.

Liu, Z., Duan, X., Cheng, H., Zhou, J., Zhou, X., Yuan, W. (2015). Synthesis of platinum/graphene composites by a polyol method: The role of graphite oxide precursor surface chemistry. Carbon, 89, 93-101.

Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J.M., Alarcon, E., Chigrin, D. N. (2012). Photonics and Nanostructures – Fundamentals and Applications, 10, 353-358.

Lobato, B., Wendelbo, R., Barranco, V., Centeno, T. A. (2014). Graphite Oxide: An Interesting Candidate for Aqueous Supercapacitors. Electrochimica Acta, 149, 245-251.

Makarova, T. L., Shelankov, A. L., Serenkov, I. T., Sakharov, V. I., Boukhvalov, D. W. (2011). Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Physical Reviews B, 83, 085417 1-8.

Matsuo, Y., Ueda, K. (2014). Pyrolytic carbon from graphite oxide as a negative electrode of sodium-ion battery. Journal of Power Source, 263, 158-162.

Mineo, H., Kondo, H., Hori, M. (2013). Graphene Nanowalls. In Tech Chapter 9. 235-260.

Mishra, A. K., Ramaprabhu, S. (2012). Graphene-based nano-patch antenna for terahertz radiation. Chem. Eng. J.,187, 10-15.

Mizoguchi, T., Misaki, H., Shintaro, I., Michio, K. (2020). Free Standing Graphene Oxide Membrane with Epoxy Groups for Water Purification. Chemical Letters, 49, 376-378.

Mu. X., Wu, X., Zhang, T., Go, D. B., Luo, T. (2014). Thermal Transport in Graphene Oxide –From Ballistic Extreme to Amorphous Limit. Nature: Science Reports, 4, 3909 1-9.

Naser, A. A., Al-Sawaad, H. Z., Al-Mubarak, A. S. (2020). Novel graphene oxide functionalization by urea and thiourea, and their applications as anticorrosive agents for carbon steel alloy in acidic medium. J. Mater. Environ. Sci, 11, 3 404-420.

Newman, L., Rodrigues, A. F., Jasim Dhifaf, A., Vacchi, I. A., Menard-Moyon, C., Bianco, A., Busy, C., Kostarelos, K. (2020). Nose-to-Brain translocation and cerebral biodegradation of thin graphene oxide nanosheets. Cell Reports Physical Science, 1, 100176 1-23.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M.I., Grigorieva, I. V., Dubonos, S.V., Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.

O’Donnell, K. P., Chen, X. (1991). Temperature dependence of semiconductor band gaps. Appl. Phys. Letters, 58, 2924-2926.

Pässler, R. (1997). Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors. Phys. Stat. Sol. B, 200, 155-172.

Petit, C., Bandosz, T. J. (2015). Engineering the surface of a new class of adsorbents: Metal–organic framework/graphite oxide composites. J. Colloid Interface Sciences, 447, 139-151.

Prías-Barragán, J. J. (2018). Transport mechanisms study in graphite oxide platelets obtained from bamboo for possible applications in electronic. Doctoral Thesis, University of Valle, Colombia, 1, 1-209.

Prías-Barragán, J. J., Echeverry-Montoya, N. A., Ariza-Calderón, H. (2015). Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 444-449.

Prías-Barragán, J.J., Gross, K., Ariza-Calderón, H., Prieto, P. (2016). Synthesis and vibrational response of graphite oxide platelets from bamboo for electronic applications. Phys. Status Solidi A, 213, 85-90.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2018). Transport mechanisms study in graphene oxide multilayers obtained from bamboo as source material and possible applications in electronic. Revista de Divulgación Científica y Tecnológica, del Instituto Interdisciplinario de las Ciencias de la Universidad del Quindío, 1, 9-47.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2019). Graphene Oxide Multilayers Obtained from Bamboo: New Synthesis Method, Basic Properties, and Future Electronic Applications. Wiley Scrivener Publishing LLC, London UK. 8, 191-236.

Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2019). Graphene oxide multilayers: Synthesis, properties and possible applications in electronics. Latin American Electron Devices Conference IEEE 1, 61-64.

Prías-Barragán, J.J., Gross, K., Ariza-Calderón, H., Prieto, P., Di Giorgio, C., Bobba, F., Cucolo, A.M. (2021). Room-temperature ferromagnetism in oxidized-graphenic nanoplatelets induced by topographic defects. Journal of Magnetism and Magnetic Materials, 524, 167664 1-11.

Prías-Barragán, J. J., González-Hernández, R., Hoyos-Ariza, F., Ramírez, J. G., Ibarra, M. R., Príeto, P. (2022). Magnetism in graphene oxide nanoplatelets: The role of hydroxyl and epoxy bridges. Journal of Magnetism and Magnetic Materials, 541, 168506 1-8.

Prías-Barragán, J. J., Gross, K., Perea, J.D., Killilea, N., Heiss, W., Brabec, C. J., Ariza-Calderón, H., Prieto, P. (2020). Graphene Oxide Thin Films: Synthesis and Optical Characterization. Chemistry Select, 5, 11737-11744.

Prusty, G., Swain, S. K. (2012). Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability. New Carbon Materials, 27, 271-277.

Qiao, W. M., Song, Y., Huda, M., Zhang, X., Yoon, S. H., Mochida, I., Katou, O., Hayashi, H., Kawamoto, K. (2005). Development of carbon precursor from bamboo tar. Carbon, 43, 3021-3025.

Rao, C. N. R., Ramakrishna, Matte H. S., Subrahmanyam, K. S., Urmimala, M. (2012). Unusual magnetic properties of graphene and related materials. Chem. Sci. 3, 45-52.

Rozploch, F., Patyk, J., Stankowski, J. (2007). Graphenes Bonding Forces in Graphite Acta Phys. Polonica. A, 112, 557-563.

Rui Chen, Quan-Lin, Ye., He, T. C., Wu, T., Sun, H. D. (2011). Uniaxial tensile strain and exciton–phonon coupling in bent ZnO nanowires. Applied Physics Letters, 98, 241916-1-3.

Sachdeva, H. (2020). Recent advances in the catalytic applications of GO/rGO for green organic synthesis. Green Processing and Synthesis, 9, 515-537.

Sanchez-Trujillo, D. J., Osorio-Maldonado, L. V., Prías-Barragán, J. J. (2023). Temperature dependence of electrical conductivity and variable hopping range mechanism on graphene oxide films. Nature: Science Report, 13(4810), 1-12.

Sangwan, V. K., Southard, A., Moore, T. L., Ballarotto, V. W., Hines, D. R., Fuhrer, M. S., Williams, E. D. (2011). Transfer printing approach to all-carbon nanoelectronics. Nanoelectronics Microelectron. Eng. 88, 3150-3154.

Singh, A., Chandra, A. (2013). Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J. Appl. Electrochem. 43, 773-782.

Tang, L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., Wei, C., Lau, S. P. (2012). Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22, 5676-5683.

Tang, Q., Wu, J., Li, Q., Lin, J. (2008). High conducting multilayer films from poly (sodium styrene sulfonate) and graphite nanoplatelets by layer-by-layer self-assembly. Polymer, 49, 5329-5335.

Varshni, Y. P. (1967). Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154.

Vina. L., Iogothetidis, S., Cardona, M. (1984). Temperature dependence of the dielectric function of germanium. Physical Review B, 30 (4), 1979-1991.

Virendra, S., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science 56, 1178-1271.

Wallace, P.R. (1947). The band theory of graphite. Physical Review, 71(9), 622-634.

Wang, Y., Yingbo, Q., Yu, S., Meng, Z., Shaobo, D. (2020). A study on preparation of modified Graphene Oxide and flame retardancy of polystyrene composite microspheres Designed Monomers and Polymers, 23, 1-15.

Wei, T., Fan, Z., Zheng, C., Yao, C., Li, W. (2009). Movement-induced voltage properties of stable graphite nanoplatelet suspensions. Material Letters, 63, 1608-1610.

Xue, C., Zou, J., Sun, Z., Wang, F., Han, K., Zhu, H. (2014). Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. International Journal Hydrogen Energy, 39, 7931-7939.

Zhang, Bo., Li, Q., Cui, T. (2012). Título del Artículo. Biosensors Bioelectron, 31, 105-109.

Zou, B. K., Zhang, Y. Y., Wang, J. Y., Liang, X., Ma, X. H, Chen, C. H, (2015). Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochimica Acta, 167, 25-31.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales