Heterogeneous photocatalysis for ortho- and metanitroaniline degradation
Portada 45 (174) 2021
PDF (Español (España))

Supplementary Files

Información suplementaria (Español (España))

How to Cite

Gómez- González, S. M., Cortés-Hernández, H. F., Castellanos-Blanco, N. yamile, & Rodríguez-Pérez, J. R. . (2021). Heterogeneous photocatalysis for ortho- and metanitroaniline degradation. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(174), 300–312. https://doi.org/10.18257/raccefyn.1315

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Nitroanilines are compounds widely used in chemical pesticides, derived from azo dyes, pharmaceutical products, and fuel additives, among others. The study and application of nitroanilines have been important from a commercial and industrial perspective; however, it has been found that the elimination of nitroaniline derivatives in water bodies at low concentrations generates high contamination. In this sense, the study of alternative techniques and processes for their degradation is important. In the present study, we proposed a process for the degradation of ortho- and metanitroaniline derivatives using heterogeneous catalysis with TiO2. We created a laboratory-scale prototype reactor and evaluated the amount of TiO2, the pH value, and the concentration of oxidant (H2O2) for both nitroanilines and we were able to determine the degradation kinetics, analyze the catalyst recovery, and establish the optimal degradation conditions. We found that the amount of peroxide and pH value account for the highest percentage of degradation. Finally, we obtained the mineralization of 93.5% and 97.6% for the ortho- and meta-nitroaniline isomers, respectively, with a pseudo-zero-order reaction for the degradation of both compounds based on the Langmuir-Hinshelwood mechanism.  

https://doi.org/10.18257/raccefyn.1315

Keywords

2-nitroaniline | 3-nitroaniline | Photodegradation | TiO2 | Pseudo-zero-order.
PDF (Español (España))

References

Alalm, MG. & Tawfik, A. (2014). Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide. World Academy of Science, Engineering and Technology, International Science Index 86, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 8 (2): 144-147. Doi: 10.5281/zenodo.1090934

Al-bayati, TM. (2014). Removal of Aniline and Nitro-Substituted Aniline from Wastewater by Particulate Nanoporous MCM-48. Particulate Science and Technology An International Journal. 32 (6): 616-623. Doi: 10.1080/02726351.2014.948973

Al-bayati TM. & Doyle, AM. (2013). Shape-Selective Adsorption of Substituted Aniline Pollutants from Wastewater. Adsorption Science & Technology. 31 (5): 459-468. Doi: 10.1260/0263-6174.31.5.459

Amritha, AS. & Manu, B. (2018). Degradation of nitroaromatic compounds: a novel approach using iron from laterite soil. Appl Water Sci. 8: 136. Doi: 10.1007/s13201-018-0778-7

Asuha, S., Zhou, X.G., Zhao, S. (2010) Adsorption of Methyl Orange and Cr(VI) on Mesoporous TiO2 Prepared by Hydrothermal Method. Journal of Hazardous Materials. 181: 204-210. Doi: 10.1016/j.jhazmat.2010.04.117

Ayoub, H., Kassir, M., Raad, M., Bazzi, H., Hijazi, A. (2017). Effect of Dye Structure on the Photodegradation Kinetic Using TiO2 Nanoparticles. Journal of Materials Science and Chemical Engineering. 5: 31-45. Doi: 10.4236/msce.2017.56004

Blakey, DH., Maus, KL., Bell, R., Bayley, J., Douglas, GR., Nestmann, ER. (1994). Mutagenic activity of 3 industrial chemicals in a battery of in vitro and in vivo tests. Mutat Res-Gen Tox. 320 (4): 273-283. Doi: 10.1016/0165-1218(94)90080-9

Deng, Y. & Zhao R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollution Rep. 1: 167-176. Doi: 10.1007/s40726-015-0015-z

Díaz, WD., Cortés, HF., Rodríguez, JA. (2017). Degradación fotocatalítica de la orto y metanitroanilina en un reactor cilíndrico – parabólico compuesto. Entre Ciencia e Ingeniería. 11(22): 95-100. Doi: 10.31908/19098367.3554

Dong, Z., Le, X., Li, X., Zhang, W., Dong, C., Ma, J. (2014). Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2- nitroaniline. Appl Catal B. 158 (129): 129-135. Doi: 10.1016/j.apcatb.2014.04.015

Gautam, S., Kamble, SP., Sawant, SB., Pangarkar, VG. (2005). Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation. Chemical Engineering Journal. 110 (1-3):129-137. Doi: 10.1016/j.cej.2005.03.021

Gnanaprakasam, A., Sivakumar, VM., Thirumarimurugan, M. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science. 2015: 1-16. Doi: 10.1155/2015/601827

Habibi, MH., Khaledisardashti, M., Montazerozohori, M. (2004). Photocatalytic Mineralisation of Aniline Derivatives in Aquatic Systems Using Semiconductor Oxides. Annali di Chimica. 94 (5-6): 421- 428. Doi: 10.1002/adic.200490051

Hasani, M. & Emami F. (2008). Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers. Talanta. 75: 116-126. Doi: 10.1016/j.talanta.2007.10.038

Hernández, JM., García, LA., García, R., Cueto, A., Carmona, J. (2012). Estudio cinético de la fotodegradación del naranja de metilo en presencia de TiO2: efecto de la fuente de radiación U.V., concentración del azo-colorante y del catalizador. Av. cien. Ing. 3 (2): 25-34.

Huang, W. & Liu, R. (2011). Photocatalytic Degradation of p-Nitroaniline with Composite Photocatalyst H3P12W40/TiO2. Advanced Materials Research. 233-235: 967-970. Doi: 10.4028/www.scientific. net/AMR.233-235.967

Lan, S., Liu, L., Li, R., Leng, Z., Gan, S. (2014). Hierarchical Hollow Structure ZnO: Synthesis, Characterization, and Highly Efficient Adsorption/Photocatalysis toward Congo Red. Industrial & Engineering Chemistry Research. 53 (8): 3131-3139. Doi: 10.1021/ie404053m

Li, K., Zheng, Z., Feng, J., Zhang, J., Luo, X., Zhao, G., Huang, X. (2008). Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. Journal of Hazardous Materials. 166 (2-3): 1180-1185. Doi: 10.1016/j.jhazmat.2008.12.035

Ma, H., Wang, M., Pu, C., Zhang J., Zhao, S., Yao, S., Xiong, J.(2009). Transient and steady-state photolysis of p-nitroaniline in aqueous solution. Journal of Hazardous Materials. 165 (1-3): 867-873. Doi: 10.1016/j.jhazmat.2008.10.077

Mei, X., Ding, Y., Wang, Y., Yang, Y., Xu, L., Wang, Y., Shen, W., Zhang, Z., Ma, M., Guo, Z., Xiao, Y., Yang, X., Zhou, B., Xu, K., Guo, W., Wang, C. (2020a). A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. Bioresource Technology. 307: 123241. Doi: 10.1016/j.biortech.2020.123241

Mei, X., Wang, Y., Yang, Y., Xu, L., Wang, Y., Guo, Z., Shen, W., Zhang, Z., Ma, M., Ding, Y., Xiao, Y., Yang, X., Yin, C., Guo, W., Xu, K., Wang, C. (2020b). Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal. Separation and Purification Technology. 248: 117078. Doi: 10.1016/j.seppur.2020.117078

Mirkhani, V., Tangestaninejad, S., Moghadam, M., Habibi, MH., Vartooni, AR. (2009). Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. Journal of the Iranian Chemical Society. 6: 800-807. Doi: 10.1007/BF03246172

Naseem, K., Begum, R., Farooqi, Z.H. (2017). Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res. 24: 6446-6460. Doi: 10.1007/s11356-016-8317-2

Panunto, TW., Urbanczyk, Z., Johnson, R., Etter, CM. (1987). Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. Journal of the American Chemical Society. 109 (25): 7786-7797. Doi: 10.1021/ja00259a030

Sapawe, N., Jalil, AA., Triwahyono, S. (2013). Photodecolorization of methylene blue over EGZrO2/EGZnO/EGFe2O3/HY photocatalyst: effect of radical scavenger. Malaysian Journal of Fundamental and Applied Sciences. 9 (2): 67-73. Doi: 10.11113/mjfas.v9n2.85

Saupe, A. (1999). High-rate biodegradation of 3- and 4-nitroaniline. Chemosphere. 39 (13): 2325-2346. Doi: 10.1016/S0045-6535(99)00141-1

Seshadri, H., Chitra, S., Paramasivan, K., Sinha, PK. (2008). Photocatalytic degradation of liquid waste containing EDTA. Desalination. 232 (1-3): 139-144. Doi: 10.1016/j.desal.2007.12.013

Sharma, S., Kumar, S., Arumugam, SM., Elumalai, S. (2020), Promising photocatalytic degradation of lignin over carbon quantum dots decorated TiO2 nanocomposite in aqueous condition. Applied Catalysis A: General. 602: 117730. Doi: 10.1016/j.apcata.2020.117730

Silambarasan, S. & Vangnai, A. (2016). Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. Journal of Hazardous Materials. 302: 426-436. Doi: 10.1016/j. jhazmat.2015.10.010

Sobana N., Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology. 56 (1): 101-107. Doi: 10.1016/j.seppur.2007.01.032

Sun, JH., Sun, SP., Fan, MH., Guo, HQ., Qiao, LP., Sun, RX. (2007). A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials. 148 (1-2): 172-177. Doi: 10.1016/j.jhazmat.2007.02.022

Surolia, PK., Tayade, RJ., Jasra, RV. (2010). TiO2-Coated Cenospheres as Catalysts for Photocatalytic Degradation of Methylene Blue, p-Nitroaniline, n-Decane, and n-Tridecane under Solar Irradiation. Industrial & Engineering Chemistry Research. 49 (19): 8908-8919. Doi: 10.1021/ie100388m

Theurich, J., Lindner, M., Bahnemann, DW. (1996). Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir. 12 (26): 6368-6376. Doi: 10.1021/la960228t

Wang, H., Jiang, H., Song, N., Liu, X., Jia, Q. (2014). Application of cloud point methodology to the determination of nitroanilines in natural water, Korean J. Chem. Eng. 31: 2261-2265. Doi: 10.1007/s11814-014-0182-4

Wang, N., Zheng, T., Jiang, J., Wang, P. (2015). Cu(II)–Fe(II)–H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation. Chemical Engineering Journal. 260: 386-392. Doi: 10.1016/j.cej.2014.09.002

Wang, Y., Zhang, YN., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters/carbon aerogel electrode under visible light. Separation and Purification Technology. 104: 229-237. Doi: 10.1016/j.seppur.2012.11.009

Yang, B., Cheng, Z., Fan, M., Jia, J., Yuan, T., Shen, Z. (2018). Supercritical water oxidation of 2-, 3- and 4-nitroaniline: A study on nitrogen transformation mechanism. Chemosphere. 205:426-432. Doi: 10.1016/j.chemosphere.2018.04.029

Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., Zhang, F., Dionysiou, DD. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials. 209-210: 271-277. Doi: 10.1016/j.jhazmat.2012.01.021

Zheng, K., Zhang, TC., Lin, P., Han, YH., Li, HY., Ji, RJ., Zhang HY. (2015). 4-Nitroaniline Degradation by TiO2 Catalyst Doping with Manganese. Journal of Chemistry. 2015: 1-6. Doi: 10.1155/2015/382376

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales