Mie scattering study of dielectric nanoparticles and nanoantennas applications
PDF

Supplementary Files

Figura 1S (Español (España))
Figura 2S (Español (España))
Figura 3S (Español (España))
Figura 4S (Español (España))
Figura 5S (Español (España))
Figura 6S (Español (España))

How to Cite

Jaimes-Suárez, O. D. ., & Peña-Pedraza, H. . (2020). Mie scattering study of dielectric nanoparticles and nanoantennas applications. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(173), 974–983. https://doi.org/10.18257/raccefyn.1265

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The development of devices for focusing radiation on desired targets is of great importance in different fields of science and communication technologies as it would allow the creation of more efficient optical instruments. In this study, we explored the dispersion of dielectric spherical nanoparticles using elements from Mie’s theory. There was evidence that the form of dispersed radiation patterns depends on factors such as the size of particles and the wavelength of incident radiation. The knowledge regarding radiation dispersion could be applied in the development of nanoantennas, as well as new nanotechnology devices and arrangements.

https://doi.org/10.18257/raccefyn.1265

Keywords

Dielectric nanoparticles | Nanoantennas | Radiation pattern
PDF

References

Biagioni, P., Huang, J. S., Hecht, B. (2012). Nanoantennas for visible and infrared radiation, Reports on Progress in Physics. 75 (2): 024402.

Bohren, C. F., Huffman, D. R. (2008). Absorption and scattering of light by small particles, New York, USA: John Wiley & Sons.

Cornejo-Monroy, D., Sánchez-Ramírez, J. F., Pescador Rojas, J. A., Herrera-Pérez J. L., González-Araoz, M. P., Guarneros, C.(2009). Nanoesferas monodispersas de SiO2: síntesis controlada y caracterización, Superficies y vacío. 22 (3): 44-48.

Decker, M., Staude, I. (2016). Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics, Journal of Optics. 18 (10):103001.

Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., Chichkov, B. N. (2012). Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano letters. 12 (7): 3749-3755.

Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., Luk’yanchuk, B. (2013). Directional visible light scattering by silicon nanoparticles. Nat, Commun. 4: 1527.

Kerker, M., Wang, D. S., Giles, C. L. (1983). Electromagnetic scattering by magnetic spheres, JOSA. 73 (6): 765-767.

Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., Luk’Yanchuk, B. (2012). Magnetic light, Scientific reports. 2: 492.

Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S., Luk’yanchuk, B. (2016). Optically resonant dielectric nanostructures, Science. 354 (6314): aag2472.

Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials, Nature materials. 9 (9): 707-715.

Mongia, R. K., Bhartia, P. (1994). Dielectric resonator antennas—A review and general design relations for resonant frequency and bandwidth, International Journal of Microwave and Millimeter‐Wave Computer‐Aided Engineering. 4 (3): 230-247.

Novotny, L., Van Hulst, N. (2011). Antennas for light, Nature photonics. 5 (2): 83-90.

Tribelsky, M. I., Geffrin, J. M., Litman, A., Eyraud, C., Moreno, F. (2015). Small dielectric spheres with high refractive index as new multifunctional elements for optical devices, Scientific reports. 5: 12288.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales