Monitoreo fotoacústico de plantas Musa acuminata (Musaceae) infectadas con el hongo Fusarium oxysporum (Nectriaceae)
PDF

Cómo citar

Gordillo-Delgado, F., & Botero-Zuluaga, M. (2020). Monitoreo fotoacústico de plantas Musa acuminata (Musaceae) infectadas con el hongo Fusarium oxysporum (Nectriaceae). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(173), 1073–1082. https://doi.org/10.18257/raccefyn.1227

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

La técnica fotoacústica permite evaluar el comportamiento de la razón de evolución de oxígeno de las plantas, el cual es un indicador del rendimiento fotosintético. En este estudio se monitoreó este parámetro y el crecimiento de un grupo de plantas de banano Gros Michel (Musa AAA), infectadas con Fusarium oxysporum f.sp. cubense, patógeno causante de la marchitez vascular, una enfermedad destructiva que amenaza la sostenibilidad de los cultivares sensibles a ella en las regiones productoras. La infección efectiva de las plantas y el progreso de la  marchitez comúnmente se evalúan a partir de la manifestación de los primeros síntomas externos de clorosis en las hojas bajeras, a los que se asigna un valor cuantitativo según su gravedad. Aunque en el análisis de la razón de evolución de oxígeno y del crecimiento no se encontraron diferencias estadísticas significativas entre las plantas infectadas con Fusarium oxysporum f.sp. cubense y las plantas sanas, se demostró que esta técnica permite incluir caracteres fenotípicos relacionados con la actividad fotosintética en la caracterización de los cultivos. Los resultados en cuanto a la afectación de la enfermedad se pueden asociar con las condiciones de cultivo en invernadero y con la etapa asintomática de la enfermedad en la que se hizo la observación.

https://doi.org/10.18257/raccefyn.1227

Palabras clave

Banano | Fotosíntesis | Marchitez por Fusarium | Razón de evolución de oxígeno
PDF

Citas

Aristizábal, M. (2008). Evaluación del crecimiento y desarrollo foliar del plátano hondureño enano (Musa AAB) en una región cafetera colombiana. Agron, 16 (2): 23-30.

Ashraf, M. H. P. J. C., Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica. 51 (2): 163-190. Doi: https://doi.org/10.1007/s11099-013-0021-6

Barja, P. R., Mansanares, A. M., Da Silva, E. C., Magalhães, A. C. N., Alves, P. L. C. A. (2001). Photosynthesis in eucalyptus studied by the Open Photoacoustic technique: Effects of irradiance and temperature. Acoust Phys. 47 (1): 16-21. Doi: 10.1134/1.1340073

Cayón-Salinas, D. G. (2001). Evolución de la fotosíntesis, transpiración y clorofila durante el desarrollo de la hoja de plátano Musa AAB Simmonds). Infomusa (FRA). 12 (15): 10.

De Sain, M. & Rep, M. (2015). The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci. 16 (10): 23970-23993. Doi: 10.3390/ijms161023970

Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci. 9: 1468. Doi: 10.3389/fpls.2018.01468

Dong, X., Xiong, Y., Ling, N., Shen, Q., Guo, S. (2014). Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J Microbiol Biotechnol. 30 (4): 1399-408. Doi: 10.1007/s11274-013-1564-1

Dong, X., Wang, M., Ling, N., Shen, Q., Guo, S. (2016). Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. cubense. Environ Exp Bot. 129: 4-12. Doi: 10.1016/j.envexpbot.2016.01.005

Ducruet, J. M., Peeva, V., Havaux, M. (2007). Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynthesis Research. 93 (1-3): 159-171. Doi: 10.1007/s11120-007-9132-x

Ghag, S. B., Shekhawat, U. K., Ganapathi, T. R. (2015). Fusarium wilt of banana: biology, epidemiology and management. Int J Pest Manag. 61 (3): 250-63. Doi: 10.1080/09670874.2015.1043972

Gordillo-Delgado, F., Marín, E., Calderón, A. (2016). Effect of Azospirillum brasilense and Burkholderia unamae Bacteria on Maize Photosynthetic Activity Evaluated Using the Photoacoustic Technique. International Journal of Thermophysics. 37(9): 92. Doi: 10.1007/s10765-016-2101-x

Gordillo-Delgado, F., Zuluaga-Acosta, J., Marín-Gallego, B. J. (2019). Inoculación de nanopartículas de TiO2-Ag en semillas de espinaca. Informador Técnico. 83: 90-99.10.23850/22565035.1659.

Gordon, T. R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev phytopathol. 55: 23-39. Doi: 10.1146/annurev-phyto-080615-095919

Han, T., Vogelmann, T. C. Nishio, J. (1999). A photoacoustic spectrometer for measuring heat dissipation and oxygen quantum yield at the microscopic level within leaf tissues. J. Photochem. Photobiol. B, Biol. 48 (2-3): 158-165. Doi: 10.1016/S1011-1344(99)00042-1

Herbert, S. K., Han, T., Vogelmann, T. C. (2000). New applications of photoacoustics to the study of photosynthesis. Photosynth Res. 66 (1-2): 13-31. Doi: 10.1023/A:1010788504886

Herbert, S. K., Biel, K. Y., Vogelmann, T. C. (2006). A photoacoustic method for rapid assessment of temperature effects on photosynthesis. Photosynth res. 87 (3): 287-294. Doi: 10.1007/ s11120-005-9009-9

Hou, H. J., Sakmar, T. P. (2010). Methodology of pulsed photoacoustics and its application to probe photosystems and receptors. Sensors. 10 (6): 5642-5667. Doi: 10.3390/s100605642

Liu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., Sheng, O. (2020). Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol. 225 (2): 913-929. Doi: 10.1111/nph.16193

Lorenzini, G., Guidi, L., Nali, C., Ciompi, S., Soldatini, G. F. (1997). Photosynthetic response of tomato plants to vascular wilt diseases. Plant Sci. 124 (2): 143-152. Doi: 10.1016/S0168-9452(97)04600-1

Järvi, S., Gollan, P. J., Aro, E. M. (2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. Frontiers in Plant Science. 4: 434. Doi: 10.3389/fpls.2013.00434

Madroñero, L. J., Corredor-Rozo, Z. L., Escobar-Pérez, J., Velandia-Romero, M. L. (2019). Next generation sequencing and proteomics in plant virology: how is Colombia doing? Acta Biológica Colombiana. 24 (3): 423-438. Doi: 0.15446/abc.v24n3.79486

Malkin, S. & Canaani, O. (1994). The use and characteristics of the photoacoustic method in the study of photosynthesis. Annual review of plant mol biol. 45 (1): 493-526.

Marín-Ortiz J. C., Gutiérrez-Toro N., Botero-Fernández V., Hoyos-Carvajal L.M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences. 27 (1): 88-99. Doi: 10.1016/j.sjbs.2019.05.007

Moreno, S. G., Vela, H. P., Álvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica. 27 (4): 119-129.

Ploetz, R. C., Haynes, J. L., Vázquez, A. (1999). Responses of new banana accessions in South Florida to Panama disease. Crop Prot. 18 (7): 445-449. Doi: 10.1016/S0261-2194(99)00043-5

Pshibytko, N. L., Zenevich, L. A., Kabashnikova, L. F. (2006). Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant Physiol. 53 (1): 25-31. Doi: 10.1134/S1021443706010031

Rai, A. K., Mathur, D., Singh, J. P. (2001). Photoacoustic Spectroscopy, a Nondestructive Method for Sensitive Analysis of Disease in Plants. Instrum Sci Technol. 29 (5): 355-366. Doi: 10.1081/CI-100107228

Sánchez-Rocha, S., Vargas-Luna, M., Gutiérrez-Juárez, G., Huerta-Franco, R., Olalde-Portugal, V. (2008). Benefits of the Mycorrhizal Fungi in Tomato Leaves Measured by Open Photoacoustic Cell Technique: Interpretation of the Diffusion Parameters. Int J Thermophy. 29 (6): 2206-2214. Doi: 10.1007/s10765-008-0411-3

Singh, V. K., Singh, H. B., Upadhyay, R. S. (2017). Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiol bioch. 118: 320-32. Doi: 10.1016/j.plaphy.2017.06.028

Vargas-Luna, M., Madueño, L., Gutiérrez-Juárez, G., Bernal-Alvarado, J., Sosa, M., González-Solıs, J. L., Campos, P. (2003). Photorespiration and temperature dependence of oxygen evolution in tomato plants monitored by open photoacoustic cell technique. Rev Sci Instrum.74 (1): 706-708. Doi: 10.1063/1.1517753

Spiegel, M. (2009). Estadística. (4a. ed.) McGraw-Hill Interamericana. http://crai.referencistas. com:2078/?il=608

Veljović-Jovanović, S., Vidović, M., Morina, F., Prokić, L., Todorović, D. M. (2016). Comparison of photoacoustic signals in photosynthetic and nonphotosynthetic leaf tissues of variegated Pelargonium zonale. Int J Thermophy. 37 (9): 91. Doi: 10.1007/s10765-016-2092-7

Wu, H. S., Bao, W., Liu, D. Y., Ling, N., Ying, R. R., Raza, W., Shen, Q. R. (2008). Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia. 61 (3): 258-268. Doi: 10.1080/00087114.2008.10589638

Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., Zou, L. Y. (2004). Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil. 263 (1): 143-150. Doi: 10.1023/B:PLSO.0000047721.78555.dc

Zakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Saparbaev, A. A. (2012). Photoacoustic spectroscopy of thermal relaxation processes of solar energy in the photosynthetic apparatus of plants. Applied Solar Energy. 48 (1): 62-66. Doi: 10.3103/S0003701X12010161

Zakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Tazhibaev, I. I. (2019). A Low-Frequency Photoacoustic pectrometer with an RGB Light-Emitting Diode for Evaluating Photosynthetic Activity in Plant Leaves. Acoust Phys. 65 (1):90-95. Doi:10.1134/S1063771019010172

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales