Abstract
The photoacoustic technique allows evaluating the behavior of the oxygen evolution ratio of plants, which is an indicator of photosynthetic performance. In this study, we monitored this parameter and the growth of a group of Gros Michel banana plants (Musa AAA) infected with Fusarium oxysporum f.sp. cubense. This pathogen causes vascular wilt, a destructive disease that threatens the sustainability of susceptible cultivars in producing regions. The effective infection of plants and the progress of wilt are usually evaluated from the moment of the first external symptoms of chlorosis in the lower leaves to which a quantitative value is assigned according to their severity. Although no significant statistical differences between Fusarium oxysporum f.sp. cubense infected plants and healthy plants were evident in the oxygen evolution ratio and growth analyses, we showed that this technique allows including phenotypic characteristics related to photosynthetic activity in the characterization of crops. The results regarding the disease can be associated with greenhouse growing and the asymptomatic stage in which plants were observed.
Keywords
References
Aristizábal, M. (2008). Evaluación del crecimiento y desarrollo foliar del plátano hondureño enano (Musa AAB) en una región cafetera colombiana. Agron, 16 (2): 23-30.
Ashraf, M. H. P. J. C., Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica. 51 (2): 163-190. Doi: https://doi.org/10.1007/s11099-013-0021-6
Barja, P. R., Mansanares, A. M., Da Silva, E. C., Magalhães, A. C. N., Alves, P. L. C. A. (2001). Photosynthesis in eucalyptus studied by the Open Photoacoustic technique: Effects of irradiance and temperature. Acoust Phys. 47 (1): 16-21. Doi: 10.1134/1.1340073
Cayón-Salinas, D. G. (2001). Evolución de la fotosíntesis, transpiración y clorofila durante el desarrollo de la hoja de plátano Musa AAB Simmonds). Infomusa (FRA). 12 (15): 10.
De Sain, M. & Rep, M. (2015). The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci. 16 (10): 23970-23993. Doi: 10.3390/ijms161023970
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci. 9: 1468. Doi: 10.3389/fpls.2018.01468
Dong, X., Xiong, Y., Ling, N., Shen, Q., Guo, S. (2014). Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J Microbiol Biotechnol. 30 (4): 1399-408. Doi: 10.1007/s11274-013-1564-1
Dong, X., Wang, M., Ling, N., Shen, Q., Guo, S. (2016). Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. cubense. Environ Exp Bot. 129: 4-12. Doi: 10.1016/j.envexpbot.2016.01.005
Ducruet, J. M., Peeva, V., Havaux, M. (2007). Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynthesis Research. 93 (1-3): 159-171. Doi: 10.1007/s11120-007-9132-x
Ghag, S. B., Shekhawat, U. K., Ganapathi, T. R. (2015). Fusarium wilt of banana: biology, epidemiology and management. Int J Pest Manag. 61 (3): 250-63. Doi: 10.1080/09670874.2015.1043972
Gordillo-Delgado, F., Marín, E., Calderón, A. (2016). Effect of Azospirillum brasilense and Burkholderia unamae Bacteria on Maize Photosynthetic Activity Evaluated Using the Photoacoustic Technique. International Journal of Thermophysics. 37(9): 92. Doi: 10.1007/s10765-016-2101-x
Gordillo-Delgado, F., Zuluaga-Acosta, J., Marín-Gallego, B. J. (2019). Inoculación de nanopartículas de TiO2-Ag en semillas de espinaca. Informador Técnico. 83: 90-99.10.23850/22565035.1659.
Gordon, T. R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev phytopathol. 55: 23-39. Doi: 10.1146/annurev-phyto-080615-095919
Han, T., Vogelmann, T. C. Nishio, J. (1999). A photoacoustic spectrometer for measuring heat dissipation and oxygen quantum yield at the microscopic level within leaf tissues. J. Photochem. Photobiol. B, Biol. 48 (2-3): 158-165. Doi: 10.1016/S1011-1344(99)00042-1
Herbert, S. K., Han, T., Vogelmann, T. C. (2000). New applications of photoacoustics to the study of photosynthesis. Photosynth Res. 66 (1-2): 13-31. Doi: 10.1023/A:1010788504886
Herbert, S. K., Biel, K. Y., Vogelmann, T. C. (2006). A photoacoustic method for rapid assessment of temperature effects on photosynthesis. Photosynth res. 87 (3): 287-294. Doi: 10.1007/ s11120-005-9009-9
Hou, H. J., Sakmar, T. P. (2010). Methodology of pulsed photoacoustics and its application to probe photosystems and receptors. Sensors. 10 (6): 5642-5667. Doi: 10.3390/s100605642
Liu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., Sheng, O. (2020). Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol. 225 (2): 913-929. Doi: 10.1111/nph.16193
Lorenzini, G., Guidi, L., Nali, C., Ciompi, S., Soldatini, G. F. (1997). Photosynthetic response of tomato plants to vascular wilt diseases. Plant Sci. 124 (2): 143-152. Doi: 10.1016/S0168-9452(97)04600-1
Järvi, S., Gollan, P. J., Aro, E. M. (2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. Frontiers in Plant Science. 4: 434. Doi: 10.3389/fpls.2013.00434
Madroñero, L. J., Corredor-Rozo, Z. L., Escobar-Pérez, J., Velandia-Romero, M. L. (2019). Next generation sequencing and proteomics in plant virology: how is Colombia doing? Acta Biológica Colombiana. 24 (3): 423-438. Doi: 0.15446/abc.v24n3.79486
Malkin, S. & Canaani, O. (1994). The use and characteristics of the photoacoustic method in the study of photosynthesis. Annual review of plant mol biol. 45 (1): 493-526.
Marín-Ortiz J. C., Gutiérrez-Toro N., Botero-Fernández V., Hoyos-Carvajal L.M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences. 27 (1): 88-99. Doi: 10.1016/j.sjbs.2019.05.007
Moreno, S. G., Vela, H. P., Álvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica. 27 (4): 119-129.
Ploetz, R. C., Haynes, J. L., Vázquez, A. (1999). Responses of new banana accessions in South Florida to Panama disease. Crop Prot. 18 (7): 445-449. Doi: 10.1016/S0261-2194(99)00043-5
Pshibytko, N. L., Zenevich, L. A., Kabashnikova, L. F. (2006). Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant Physiol. 53 (1): 25-31. Doi: 10.1134/S1021443706010031
Rai, A. K., Mathur, D., Singh, J. P. (2001). Photoacoustic Spectroscopy, a Nondestructive Method for Sensitive Analysis of Disease in Plants. Instrum Sci Technol. 29 (5): 355-366. Doi: 10.1081/CI-100107228
Sánchez-Rocha, S., Vargas-Luna, M., Gutiérrez-Juárez, G., Huerta-Franco, R., Olalde-Portugal, V. (2008). Benefits of the Mycorrhizal Fungi in Tomato Leaves Measured by Open Photoacoustic Cell Technique: Interpretation of the Diffusion Parameters. Int J Thermophy. 29 (6): 2206-2214. Doi: 10.1007/s10765-008-0411-3
Singh, V. K., Singh, H. B., Upadhyay, R. S. (2017). Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiol bioch. 118: 320-32. Doi: 10.1016/j.plaphy.2017.06.028
Vargas-Luna, M., Madueño, L., Gutiérrez-Juárez, G., Bernal-Alvarado, J., Sosa, M., González-Solıs, J. L., Campos, P. (2003). Photorespiration and temperature dependence of oxygen evolution in tomato plants monitored by open photoacoustic cell technique. Rev Sci Instrum.74 (1): 706-708. Doi: 10.1063/1.1517753
Spiegel, M. (2009). Estadística. (4a. ed.) McGraw-Hill Interamericana. http://crai.referencistas. com:2078/?il=608
Veljović-Jovanović, S., Vidović, M., Morina, F., Prokić, L., Todorović, D. M. (2016). Comparison of photoacoustic signals in photosynthetic and nonphotosynthetic leaf tissues of variegated Pelargonium zonale. Int J Thermophy. 37 (9): 91. Doi: 10.1007/s10765-016-2092-7
Wu, H. S., Bao, W., Liu, D. Y., Ling, N., Ying, R. R., Raza, W., Shen, Q. R. (2008). Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia. 61 (3): 258-268. Doi: 10.1080/00087114.2008.10589638
Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., Zou, L. Y. (2004). Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil. 263 (1): 143-150. Doi: 10.1023/B:PLSO.0000047721.78555.dc
Zakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Saparbaev, A. A. (2012). Photoacoustic spectroscopy of thermal relaxation processes of solar energy in the photosynthetic apparatus of plants. Applied Solar Energy. 48 (1): 62-66. Doi: 10.3103/S0003701X12010161
Zakhidov, E. A., Kokhkharov, A. M., Kuvondikov, V. O., Nematov, S. K., Tazhibaev, I. I. (2019). A Low-Frequency Photoacoustic pectrometer with an RGB Light-Emitting Diode for Evaluating Photosynthetic Activity in Plant Leaves. Acoust Phys. 65 (1):90-95. Doi:10.1134/S1063771019010172
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales