Abstract
In the last decade, magnetic nanomaterials have been widely used in the fields of chemistry, physics, engineering, and medicine due to their optical, magnetic, and conductive properties, and as contrast agents in magnetic resonance. Their influence in the treatment of cancerous tumors has been evaluated and has sparked great interest in its use in environmental repair systems such as magnetic absorbers that trap metal particles and some contaminants. Here we analyze the influence of process parameters to obtain magnetic nanoparticles under three chemical synthesis methods. Its morphological characterization was performed by scanning electron microscopy (SEM), its elemental composition by energy dispersive spectroscopy (EDS), and its structure by x-ray diffraction (XRD). Our results showed that the obtention method had a great influence as evidenced by the variability in nanoparticle sizes. It is worth highlighting that we obtained particles at a nanometric scale, especially Fe3O4 (magnetite) and Fe2O3 (maghemite) structures, with potential superparamagnetism properties that could open a wide range of future applications for the production of these materials at low cost and easy access.
Keywords
References
Arévalo, P., Isasi, J., Caballero, A. C., Marco, J. F., Martín-Hernández, F. (2017). Magnetic and structural studies of Fe3O4 nanoparticles synthesized via coprecipitation and dispersed in different surfactants. Ceramics International. 43 (13):10333-10340. Doi: 10.1016/j.ceramint.2017.05.064
Bakenecker, A. C., Ahlborg, M., Debbeler, C., Kaethner, C., Buzug, T. M., Lüdtke-Buzug, K. (2020). Magnetic particle imaging in vascular medicine. Innovative Surgical Sciences. 3 (3): 179-192. Doi: 10.1515/iss-2018-2026
Benhal, P., Broda, A., Najafali, D., Malik, P., Mohammed, A., Ramaswamy, B., Shapiro, B. (2019). On-chip testing of the speed of magnetic nano- and micro-particles under a calibrated magnetic gradient. Journal of Magnetism and Magnetic Materials. 474 (November 2018): 187–198. Doi: 10.1016/j.jmmm.2018.10.148
Blanco-Gutiérrez, V., Demourgues, A., Gaudon, M. (2013). Sub-micrometric β-CoMoO4 rods: optical and piezochromic properties. Dalton Transactions. 42: 13622-13627.
Blanco-Gutiérrez, V., Saez-Puche, R., Torralvo-Fernández, M. J. (2010). Magnetic behavior of ZnFe2O4 nanoparticles: Effects of a solid matrix and the particles size. Physical Chemistry C. 114: 1789-1795.
Chellappa, M., & Vijayalakshmi, U. (2019). Fabrication of Fe 3 O 4 -silica core-shell magnetic nano-particles and its characterization for biomedical applications. Materials Today: Proceedings. 9: 371-379. Doi: 10.1016/j.matpr.2019.02.166
Hankiewicz, J. H., Stoll, J. A., Stroud, J., Davidson, J., Livesey, K. L., Tvrdy, K., … Celinski, Z. J. (2019). Nano-sized ferrite particles for magnetic resonance imaging thermometry. Journal of Magnetism and Magnetic Materials. 469 (August 2018): 550-557. Doi: 10.1016/j.jmmm.2018.09.037
Hoang, V. Van, & Ganguli, D. (2012). Amorphous nanoparticles - Experiments and computer simulations. Physics Reports. 518 (3): 81-140. Doi: 10.1016/j.physrep.2012.07.004
Houshiar, M., Zebhi, F., Razi, Z. J., Alidoust, A., Askari, Z. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials. 371: 43-48. Doi: 10.1016/j.jmmm.2014.06.059
Iranmanesh, P., Tabatabai Yazdi, S., Mehran, M., Saeednia, S. (2018). Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. Journal of Magnetism and Magnetic Materials. 449: 172-179. Doi: 10.1016/j.jmmm.2017.10.040
Ismail M, A., Mostafa M, H., Sayed S, M. (2019). Experimental and mathematical modeling of Cr(VI) removal using nano-magnetic Fe3O4-coated perlite from the liquid phase. Chinese Journal of Chemical Engineering. (Vi): 100632. Doi: 10.1016/j.neubiorev.2019.07.019
Jin, L., Li, T., Wu, B., Yang, T., Zou, D., Liang, X., Zhang, J. (2020). Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration super-paramagnetic nanobiosensor. Food Control. 110 (September 2019). Doi: 10.1016/j.foodcont.2019.107011
Kisan, B., Shyni, P. C., Layek, S., Verma, H. C., Hesp, D., Dhanak, V., Perumal, A. (2014). Finite size effects in magnetic and optical properties of antiferromagnetic NiO nanopartsicles. IEEE Transactions on Magnetics. 50 (1). Doi: 10.1109/TMAG.2013.2278539
López-Ruiz, R., Magén, C., Luis, F., Bartolomé, J. (2012). High temperature finite-size effects in the magnetic properties of Ni nanowires. Journal of Applied Physics. 112 (7). Doi: 10.1063/1.4756038
Mohamad, N. D., Zaki, Z. M., Amir, A. (2020). Mechanisms of enhanced oxidative degradation of tetrachloroethene by nano-magnetite catalysed with glutathione. Chemical Engineering Journal. 393 (March): 124760. Doi: 10.1016/j.cej.2020.124760
Muñoz, F., Romero, A. H., Mejía-López, J., Morán-López, J. L. (2013). Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles. Journal of Nanoparticle Research. 15 (4). Doi: 10.1007/s11051-013-1524-6
Noval, V. E., Ochoa, C., Carriazo, J. G. (2017). Magnetita, una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colombiana de Quimica. 18: 42-59. Doi: 10.15446/rev.colomb.quim.v1n1.62831
Nurlilasari, P., Widiyastuti, W., Setyawan, H. (2020). Novel monopolar arrangement of multiple iron electrodes for the large-scale production of magnetite nanoparticles for electrochemical reactors. Advanced Powder Technology. 31 (3): 1160-1168. Doi: 10.1016/j.apt.2019.12.043
Patra, D., Gopalan, B., Ganesan, R. (2019). Direct solid-state synthesis of maghemite as a magnetically recoverable adsorbent for the abatement of methylene blue. Journal of Environmental Chemical Engineering. 7 (5): 103384. Doi: 10.1016/j.jece.2019.103384
Picasso, G., Vega, J., Uzuriaga, R., Ruiz, G. P. (2012). Preparación de nanopartículas de magnetita por los métodos sol-gel y precipitación: estudio de la composición química y estructura. Revista de La Sociedad Química Del Perú. 78 (3): 170-182.
Raeisi-Shahraki, R., Ebrahimi, M., Seyyed Ebrahimi, S. A., Masoudpanah, S. M. (2012). Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. Journal of magnetism and Magnetic Materials. 324 (22): 3762-3765. Doi: 10.1016/j.jmmm.2012.06.020
Ren, G., Yang, L., Zhang, Z., Zhong, B., Yang, X., Wang, X. (2017). A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. Journal of Alloys and Compounds. 710: 875-879. Doi: 10.1016/j.jallcom.2017.03.337
Rodríguez-López, A., Paredes-Arroyo, A., Mojica-Gomez, J., Estrada-Arteaga, C., CruzRivera, J. J., Elías Alfaro, C. G., Antaño-López, R. (2012). Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses. Journal of Nanoparticle Research. 14 (8). Doi: 10.1007/s11051-012-0993-3
Rodríguez-López, A. (2012). Estudio de la síntesis y caracterización de nanopartículas de magnetita por métodos electroquímicos. Access date: September 15, 2012. Retrieved from: https://cideteq.repositorioinstitucional.mx/jspui/bitstream/1021/91/1/Estudiodelasíntesisycaracterización de nanopartículas de magnetita por métodos electroquímicos.pdf
Schneider, C. A., Rasband, W. S., Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7): 671–675. Doi: 10.1038/nmeth.2089.
Shahid, M. K. & Choi, Y. (2020). Characterization and application of magnetite particles, synthesized by reverse coprecipitation method in open air from mill scale. Journal of Magnetism and Magnetic Materials. 495 (August 2019): 165823, p9. Doi: 10.1016/j.jmmm.2019.165823
Shokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials. 426 (October 2016): 74-81. Doi: 10.1016/j.jmmm.2016.11.033
Singh, H., Kumar, A., Thakur, A., Kumar, P., Nguyen, V. H., Vo, D. V. N., Kumar, D. (2020). One-Pot Synthesis of Magnetite- nO Nanocomposite and Its Photocatalytic Activity. Topics in Catalysis. (0123456789). Doi: 10.1007/s11244-020-01278-z
Sontu, U. B., G, N. R., Chou, F. C., M, V. R. R. (2018). Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method. Journal of Magnetism and Magnetic Materials. 452: 398-406. Doi: 10.1016/j.jmmm.2018.01.003
Tao, Y., Jiang, B., Yang, X., Ma, X., Chen, Z., Wang, X., Wang, Y. (2020). Physicochemical study of the sustainable preparation of nano-Fe2O3 from ferrous sulfate with coke. Journal of Cleaner Production. 255: 120175, p 9. Doi: 10.1016/j.jclepro.2020.120175
Toma, H. E., Gomes da Silva, D., Condomitti, U. (2016). Nanotecnologia experimental. São Paulo: Blucher. p. 63-85.
Touqeer, T., Mumtaz, M. W., Mukhtar, H., Irfan, A., Akram, S., Shabbir, A., Yaw Choong, T. S. (2020). Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: Characterization and process optimization. Energies. 13 (1). Doi: 10.3390/en13010177
Wang, L. & Zhang, M. (2020). Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method. Journal of Magnetism and Magnetic Materials, 507(October 2019): 166841. Doi: 10.1016/j.jmmm.2020.166841
Yuan, Z., Zhao, X., Meng, Q., Xu, Y., & Li, L. (2020). Effect of selective coating of magnetite on improving magnetic separation of ilmenite from titanaugite. Minerals Engineering. 149 (May 2019): 106267, p 10. Doi: 10.1016/j.mineng.2020.106267
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales