The arithmetic of Coxeter permutahedra
PDF

How to Cite

Ardila, F., Beck, M., & McWhirter, J. (2020). The arithmetic of Coxeter permutahedra. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(173), 1152–1166. https://doi.org/10.18257/raccefyn.1189

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Ehrhart theory mesures a polytope P discretely by counting the lattice points inside its dilates P, 2P, 3P, ..... We compute the Ehrhart theory of four families of polytopes of great importance in several areas of mathematics: the standard Coxeter permutahedra for the classical Coxeter groups An, Bn, Cn, Dn. A central tool, of independent interest, is a description of the Ehrhart theory of a rational translate of an integer projection of a cube.

https://doi.org/10.18257/raccefyn.1189

Keywords

Polytope | Ehrhart theory | Coxeter group | Permutahedron | Tree | Lambert function
PDF

References

Ardila, F., Castillo, F., Eur, C., & Postnikov, A. (2020). Coxeter submodular functions and deformations of Coxeter permutahedra. Adv. Math. 365: 107039.

Ardila, F., Castillo, F., & Henley, M. (2015). The arithmetic Tutte polynomials of the classical root systems. International Mathematics Research Notices. 2015 (12): 3830-3877.

Ardila, F., Supina, M., & Vindas-Meléndez, A. R. (To appear). The equivariant Ehrhart theory of the permutahedron. Proceedings of the American Mathematical Society. (arXiv:1911.11159)

Bárány, I., & F¨uredi, Z. (1987). Computing the volume is difficult. Discrete & Computational Geometry. 2 (4): 319-326.

Beck, M., & Robins, S. (2015). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra (Second ed.). Springer, New York. Retrieved from http://dx.doi.org/10.1007/978-1-4939-2969-6 (electronically available at http://math.sfsu.edu/beck/ccd.html) doi:10.1007/978-1-4939-2969-6

Coxeter, H. S. M. (1973). Regular Polytopes. Courier Corporation.

De Concini, C., & Procesi, C. (2008). The zonotope of a root system. Transform. Groups. 13 (3-4):507-526.

Deza, A., Manoussakis, G., & Onn, S. (2018). Primitive zonotopes. Discrete Comput. Geom. 60 (1): 27-39.

Dyer, M. E., & Frieze, A. M. (1988). On the complexity of computing the volume of a polyhedron. SIAM Journal on Computing. 17 (5): 967-974.

Ehrhart, E. (1962). Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris. 254: 616-618.

Fukuda, K. (2008). Software package cdd. (Electronically available at http://www.ifor.math.ethz.ch/fukuda/)

Humphreys, J. E. (1978). Introduction to Lie Algebras and Representation Theory (Vol. 9). Springer-Verlag, New York-Berlin. (Second printing, revised)

Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups (Vol. 29). Cambridge University Press, Cambridge. Retrieved from https://doi.org/10.1017/CBO9780511623646 doi: 10.1017/CBO9780511623646

McWhirter, J. (2019). Ehrhart quasipolynomials of Coxeter permutahedra (Master’s thesis, San Francisco State University). https://sfsu-space.calstate.edu/bitstream/handle/10211.3/213961/AS362019MATHM39.pdf?sequence=1.

Shephard, G. C. (1974). Combinatorial properties of associated zonotopes. Canad. J. Math. 26 (2):302-321.

Sloane, N. (n.d.). The On-Line Encyclopedia of Integer Sequences. (published electronically at http://oeis.org, 2014)

Stanley, R. P. (1991). A zonotope associated with graphical degree sequences. In Applied geometry and discrete mathematics (Vol. 4, pp. 555-570). Providence, RI: Amer. Math. Soc.

Stanley, R. P. (1999). Enumerative Combinatorics. Volume 2 (Vol. 62). Cambridge: Cambridge University Press. (With a foreword by Gian–Carlo Rota and appendix 1 by Sergey Fomin)

Stapledon, A. (2011). Equivariant Ehrhart theory. Advances in Mathematics. 226 (4): 3622-3654.

Zaslavsky, T. (1981). The geometry of root systems and signed graphs. Amer. Math. Monthly. 88(2): 88-105.

Zaslavsky, T. (1982). Signed graphs. Discrete Appl. Math. 4 (1): 47-74.

Zaslavsky, T. (1998). A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Combin. 5. Dynamic Surveys 8, 124 pp. (Electronically available at http://www.math.binghamton.edu/zaslav/Bsg/index.html)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales