Sillimanita en esquistos y cuarcitas de los Esquistos del Silgará en el cerro La Ventana, macizo de Santander, Colombia: implicaciones petrológicas
PDF

Cómo citar

García-Ramírez, C. A., Rey-Roman, M. P., & Martínez-Vertel, J. J. (2020). Sillimanita en esquistos y cuarcitas de los Esquistos del Silgará en el cerro La Ventana, macizo de Santander, Colombia: implicaciones petrológicas. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(172), 876–891. https://doi.org/10.18257/raccefyn.1147

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

La presencia masiva (18 y 52 %) de sillimanita (Sil) en esquistos y cuarcitas de la unidad   Esquistos del Silgará en los sectores del cerro La Ventana y la cuchilla Frailejones es un caso único en el macizo de Santander en la cordillera Oriental de los Andes colombianos. En estas rocas se han reconocido dos tipos de sillimanita: Sil1, de la variedad fibrolita o prismática, y Sil2, de la variedad fibrolita (que se desarrolla en forma radial asociada con cuarzo). La asociación del pico metamórfico consiste en biotita+muscovita+cuarzo+plagioclasa+sillimanita1 con la formación de abundante sillimanita de la variedad fibrolita permitió determinar las siguientes condiciones: T=650-720 °C y P=5,5-6,9 Kb. Estas condiciones sugieren que las rocas sufrieron un gradiente metamórfico de cerca de 32 °C/ Km, típico de un metamorfismo barroviano. La  Sil2 se formó en una etapa ligeramente posterior al pico metamórfico en un ambiente menos deformado y posiblemente por el efecto termal debido al emplazamiento de ortoneises del Ordovícico Tardío. Las características geoquímicas evidencian que el protolito de estos esquistos y cuarcitas fueron pelitas asociadas con un margen continental activo.

https://doi.org/10.18257/raccefyn.1147
PDF

Citas

Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2OK 2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of petrology. 29 (2): 445-522.

Best, M. G. (2003). Igneous and Metamorphic Petrology. Malden, USA: Blackwell Science Ltd. 752p.

Capitani, C. & Petrakakis, K. (2010). THERIAK-DOMINO Software. Mineralogy and Petrography. Fecha de consulta: septiembre a octubre, 2019. Disponible en: https://titan.minpet.unibas.ch/minpet/theriak/theruser.html

Castellanos, O. M., Ríos, C. A., Takasu, A. (2008). A new approach on the tectonometamorphic mechanisms associated with P-T paths of the Barrovian-type Silgará Formation at the Central Santander Massif, Colombian Andes. Earth Sciences Research Journal. 12 (2): 125-155.

Chinner, G. A. (1961). The origin of sillimanite in Glen Clova, Angus. Journal of Petrology. 2 (3): 312-323.

Douglass, S.L. & Brew, D.A. (1985). Polymetamorphism in the eastern part of the Petersburg map area, southeastern Alaska, in Bartsch-Winkler. U.S. Geological Survey. 967: 89-92.

Dusel-Bacon, C., Brew, D. A., Douglass, S. L. (1996). Metamorphic Facies Map of Southeastern Alaska: Distribution, Facies, and Ages of Regionally Metamorphosed Rocks. .S.

GEOLOGICAL SWRVEY PROFESSIONAL PAPER 1497-D. 42p.

Foster, C. T. (1991). The role of biotite as a catalyst in reaction mechanisms that form sillimanite. Canadian Mineralogist. 29: 943-963.

García, C. A., Ríos, C. A., & Castellanos, O. (2005). Medium- pressure metamorphism in the Central Santander Massif, Eastern Cordillera, Colombian Andes. Boletín de Geología. 27 (2): 44-68.

García, C. A., Rey, V., Valencia, V. (2017). Ortoneises en la Franja Silos-Babega, Macizo de Santander, Colombia: evidencias de la orogenia famatiniana en los Andes del norte. Andean Geology. 44 (3): 307-327.

García-Ramírez, C. A., Casadiegos-Agudelo, L., Castellanos-Meléndez, M. P. (2019). Petrology and geochemistry of the Silgara Schists in the Silos area, Santander Massif, Colombia. DYNA. 86 (209): 271-280.

Goldsmith, R., Marvin, R.F., Mehnert, H.H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. Geological Survey Research. 750: D44-D49.

Hash, L. J., Van Horn, E. C., Teague, K. H. (1951). Sillimanite deposits in North Carolina. Department of conservation and development. Vol 61. 51p.

Homam, S. M. & Ghaemi, F. (2008). The mechanism of fibrolite formation in the contact aureole of Mashhad granite. Iranian Journal of Crystallography and Mineralogy. 16 (1): 10.

Janoušek, V., Farrow, C. M., Erban, V. (2019). Programa “Geochemical Data Toolkit (GCDkit)” versión 6.0. Fecha de consulta: november a diciembre, 2019. Disponible en: http://www.gcdkit.org/download

Kerrick, D. M. (1987). Fibrolite in contact aureoles of Donegal, Ireland. American Mineralogist. 72 (3-4): 240-254.

Kerrick, D. M. (1990). The Al2SiO5 Polymorphs. Reviews in Mineralogy. Mineralogical Society of America: Reviews in Mineralogy, Vol. 22, 1990. xii + 406 pp.

McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy. 21: 169-200.

Mantilla, L., Bissig, T., Cottle, J.M., Hart, C. (2012). Remains of early Ordovician mantle- erived magmatism in the Santander Massif (Colombian Eastern Cordillera). Journal of South American Earth Sciences. 38: 1-12.

Mantilla, L., Bissig, T., Valencia, V., Hart, C. (2013). The magmatic history of the Vetas-California mining district; Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences. 45: 235-249.

Mantilla, L. C., García, C. A., Valencia, V. A. (2016). Propuesta de escisión de la denominada “Formación Silgará” (Macizo de Santander, Colombia), a partir de edades U-Pb en circones detríticos. Boletín de Geología. 38 (1): 33-50.

Mantilla, L. C., García, C. A., Valencia, V. A. (2016). Nuevas evidencias que soportan la escisión de la Formación Silgará y propuesta de un nuevo marco estratigráfico para el basamento metamórfico del Macizo de Santander (Cordillera Oriental de Colombia). Ciencias de la Tierra. 40 (155): 320-336.

McLennan, S.M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy. 21: 169-200.

Miyashiro, A. (1994). Evolution of Metamorphic Belts. Journal of Petrology. 2 (3): 277-311.

Moreno, M., Gómez, A., Castillo, H. (2005) La “Formación Floresta Metamorfoseada” (sensu Ward et al., 1973) no es la Formación Floresta sin metamorfosear. X Congreso Colombiano de Geología, Bogotá, Memorias, CD, 1-7.

Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta. 38 (5): 757-775.

Nesbitt, H. & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 299 (5885): 715-717.

Ríos, C. A. & García, C. A. (2001). Primera ocurrencia de los tres polimorfos de Al2SiO5 en las rocas metapelíticas de la Formación Silgará, región Suroccidental del Macizo de Santander. Boletín de Geología. 23 (38): 51-59.

Ríos, C. A., García, C. A., Takasu, A. (2003). Tectono-metamorphic evolution of the Silgará Formation Metamorphic rocks in the southwestern Santander Massif, Colombian Andes. Journal of South American Earth Sciences. 16: 133-154.

Ríos, C. A. & Castellanos, O. M. (2015). A case of regional metamorphism of Buchan type (andalusite-cordierite) in the Northern Santander Massif, Eastern Cordillera (Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 9 (152): 416-429.

Royero, J. & Clavijo, J. (2001). Memoria Explicativa del Departamento de Santander. Mapa geológico generalizado del Departamento de Santander. Escala 1:400.000. Ingeominas.

Siivola, J. & Schmid, R. (2007). List of Mineral Abbreviations. Subcommission on the Systematics of Metamorphic Rocks (SCMR). Fecha de cosnulta: noviembre a diciembre, 2019. Disponible en: https://www.bgs.ac.uk/scmr/docs/papers/paper_12.pdf

Smith, L. (1945). Sillimanite in South Carolina. Economic Geology. 40: 298-304.

Stowell, H. H. & Crawford, M. L. (2000). Metamorphic history of the Coast Mountains orogen, western British Columbia and southeastern Alaska. Geological Society of America Special Paper. 343: 257-278.

Stowell, H. H. & Tinkham, D. K. (2003). Integration of phase equilibria modelling and garnet Sm- Nd chronology for construction of P-T-t paths: examples from the Cordilleran Coast Plutonic Complex, USA. Geological Society, London, Special Publications. 220 (1): 119-145.

Taylor, S.R. & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.

Taylor, S.R. & McLennan. S.M. (1981). The composition and evolution of the continental crust: rare element evidence from sedimentary rocks. Philos Trans R. Soc Lond A. 301: 381-399.

Van Der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M., Mora, A. (2015). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research. 31: 271-294.

Van Der Lelij, R. (2013). Reconstructing north-western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: a geochronological, thermochronological and geochemical study (Tesis de doctorado). Université de Genève, Suiza.

Wang, W., Wei, C., Zhang, Y., Chu, H., Zhao, Y., Liu, X. (2013). Age and origin of sillimanite schist from the Chinese Altai metamorphic belt: implications for late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. International Geology Review. 56 (2): 224-236.

Ward, D. E., Goldsmith, R., Jimeno, R., Cruz, A., Restrepo, J., Gómez, E. (1973). Memoria explicativa: Mapa Geológico de Colombia, Plancha 109 y 110. Boletín Geológico. 21: 1-132.

Zhao, G. & Cawood, P. A. (1999). Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science. 299 (4): 309-339.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales