Abstract
The Fe-Doped ZnO system has good properties as a diluted magnetic semiconductor for spintronic applications. In this article, a review of some structural and magnetic properties of Fe-Doped ZnO is presented. Initially, a summary of the basic concepts is made to understand the spintronics concepts and their possible applications and, subsequently, the study of the Fe- Doped ZnO in samples obtained by mechanical alloy under different preparation conditions. Characterizations were made by means of X-ray diffractometry, Mössbauer spectroscopy, and vibrating sample magnetometry. The first preparation condition was an increase in the Fe concentration from 3 to 10 at % with 36 hours of milling time and a 15: 1 ball-to-powder weight ratio (BPR). In this case, there was a limited Fe concentration of approximately 5 % that was diluted into the ZnO matrix while the rest of Fe was segregated in the sample. For the second preparation condition, the Fe concentration was fixed at 10% and the milling time was varied. After 24 hours of milling, the sample was consolidated, but the Fe was not completely diluted into the ZnO matrix. Finally, using a 10% Fe concentration and increasing the BPR, all the Fe atoms were diluted in the ZnO phase without the presence of Fe segregates in the sample.
References
Ahmed, S.A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phy. 7: 604. Doi: 10.1016/J.RINP.2017.01.018
Alsaad, A. (2014). Structural, electronic and magnetic properties of Fe, Co, Mn-doped GaN and ZnO diluted magnetic semiconductors Physica B. 440: 1-9. Doi: 10.1016/j.physb.2014.01.029
Baibich, G M.N., Broto, J.M., Fert, A., van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61: 2472. Doi: 10.1103/PhysRevLett.61.2472
Beltrán, J. J., Barrero, C. A., Punnoose, A. (2015). Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. 17: 15284. Doi: 10.1039/C5CPO1408E
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B. 39 (7): 4828-4830. Doi: 10.1103/PhysRevB.39.4828
Casanova, A., Pérez-Alcázar, A., Aguirre, W.R., Salazar, D., Zamora, L.E. (2018). Effect of the Milling Conditions on the Properties of ZnO Doped with Fe. Journal of Superconductivity and Novel Magnetism. 31 (4): 4021-4028. Doi: 10.1007/s10948-018-4657-0
Chandrasekaran, E.G. (2017). Optical, electrical and ferromagnetic studies of ZnO:Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 186: 120-131R. Doi: 10.1016/j.saa.2017.05.065
Coey, J. M. D., Venkatesan, M., Fitzgerald, C. B. (2005). Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials. 4173: 173-179. Doi: 10.1038/nmat1310
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D. (2000). Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science. 287 (5455): 1019. Doi: 10.1126/science.287.5455.1019
Fan, L., Dongmei, J., Xueming, M. (2010). The influence of annealing on the magnetism of Fe doped ZnO prepared by mechanical alloying. Physica B: Condensed Matter. 405 (6): 1466. Doi: 10.1016/J.PHYSB.2009.12.010
Fert, A. & Campbell, I.A. (1968). Two-Current Conduction in Nickel. Phys. Rev. Lett. 21: 1190. Doi:10.1103/PhysRevLett.21.1190
Ghosh, S. S., Choubey, C., Sil, A. (2019). Photocatalytic response of Fe,Co, Ni doped ZnObased diluted magnetic semiconductors for spintronics applications. Superlattices and Microstructures. 125: 271-280. Doi: 10.106/j.spmi.2018.10.028
Ghosh, S.S., Choubey, C., Sil, A. (2019). Photocatalytic response of Fe, Co, Ni doped ZnObased diluted magnetic semiconductors for spintronics applications. Superlattices and Microstructures. 125: 271-280. Doi: 10.2016/j-spmi.2018.10.028
Izumi, F. & Momma, K. (2007). Three-Dimensional Visualization in Powder Diffraction. Solid State Phenomena. 130: 15-20. Doi: 10.4028/www.scientific.net/SSP.130.15
Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A. K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P. (2007). Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory. Physical Review B. 75: 144404. Doi: 10.1103/PhysRevB.75.144404
Lin, Y., Jiang, D., Lin, F., Shi, W., Ma, X. (2007). Fe-doped ZnO magnetic semiconductor by mechanical alloying. Journal of Alloys and Compounds. 436 (1-2): 30. Doi: 10.1016/j.jallcom.2006.07.011
Loegel, B. & Gautier, F. (1971). Origine de la resistivite dans le cobalt et ses alliages dilues. J. Phys. Chem. Sol. 32: 2723. Doi: 10.1016/SOO22-3697(71)80364-5
Mishra, A.K. & Das, D. (2010). Investigation on Fe-doped ZnO nanostructures prepared by a chemical route. Materials Science and Engineering B. 171 (5): 5-10. Doi: 10.1016/j.mseb.2010.03.045
Moore, G.E. (1965). Cramming more components onto integrated circuits Electronics. 38 (8): 19.
Ohno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science. 281: 951. Doi: 10.1126/science.281.5379.951
Quesada, A., García, M.A., Costa-Krämer, J.L., Fernández, J.F., Martín-González, M., Hernando, A. (2007). Semiconductores magnéticos diluidos: materiales para la spintrónica. Revista española de física. 21 (1): 37-41
Ramos, J.E., Montero-Muñoz, M., Coaquira, J.A.H., Rodríguez-Páez, J. E. (2014). Evidence of a cluster glass-like behavior in Fe-doped ZnO nanoparticles. Journal of Applied Physics. 115: 17E123. Doi: 10.1063/1.4864246
Sharma, P., Gupta, A., Owens, F.J., Inoue, A., Rao, K.V. (2004). Room temperature spintronic material Mn-doped ZnO revisited J. Magn. Magn. Mater. 282: 115-121. Doi: 10.1016/J.JMMM.2004.04.028
Sharma, P.A., Gupta, K.V., Rao, F.J., Owens, R., Sharma, R., Ahuja, J.M. Guillen, B., Johansson, B., Gehring, G.A. (2003). Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2: 673. Doi: 10.1038/nmat984
Simões, C.B., de Sousa e Silvaa, R.L., Banerjeea, B., Franco Jr., P. (2019). Investigation of Fedoped room temperature dilute magnetic ZnO semiconductors. Materials Science in Semiconductor Processing. 96: 122-126 Doi: 10.1016/j.mssp.2019.02.021
Torrance, J.B., Shafer, M.W., McGuire, T. R. (1972). Bound Magnetic Polarons and the Insulator-Metal Transition in EuO. Phys. Rev. Lett. 29: 1168. Doi: 10.1103/pHYSrEVlETT.29.1168
Ueda, K., Tabata, H., Kawai, T. (2001). Magnetic and electric properties of transition-metal- doped ZnO films Appl. Phys. Lett. 79: 988. Doi: 10.1063/1.1384478
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J. M., von. Molnár, S., Roukes, M. L.; Chtchelkanova, A.Y., Treger, D. M. (2001). Spintronics: a spin-based electronics vision for the future. Science. 294: 1488. Doi: 10.1126/science.1065389
Zamora, L.E., Paz, J. C., Piamba, J. F., Tabares, J. A., Pérez-Alcázar, G. A. (2015). A Mössbauer and magnetic study of ball milled Fe-doped ZnO Powders. Hyperfine Interact. 232: 111-118. Doi: 10.1007/s10751-015-1155-7
Zener, C. (1951). Interaction Between the d Shells in the Transition Metals. Physical Review. 81440: 440-444. Doi: 10.1103/pHYSrEV.81.440
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales