Abstract
We present the development and validation of a pyrolysis system with a controlled nitrogen atmosphere for the production of carbonaceous materials from biomass elements. Our objective was to use rice husk as a precursor to produce carbonaceous material and explore its application in different technological fields. In Colombia, over 800.000 tons of rice are produced every six months by the leading producing regions such as the Orinoquia region and the provinces of Tolima and Huila, among others. This system provides the opportunity to use agro-industrial waste such as rice husk, an environmental contaminator, and convert it into a useful and value-added material for the development of science and technology in emerging technological fields. Analyses performed using electron scanning microscopy (SEM) have shown that the synthesized material is a porous carbonaceous substance composed of irregular fibers with a hollow internal structure between 5 and 30 μm in size. The Raman spectra show a vibrational response of graphene oxide (GO) multilayer type. These results suggest the GO derived from rice husk can be a candidate for the development of applications in technological areas such as flexible electronic devices and systems, sensors, batteries, supercapacitors for energy storage, and bioremediation systems, among other technological applications.
References
Abril, D. & Abril, A. (2010). Silicio a partir de cáscara de arroz para la confección de paneles fotovoltaicos. UCMaule Revista Académica. 38: 11-30.
Ahiduzzaman Md, A.K.M. & Sadrull-Islam, A.K.M. (2016). Preparation of 40 porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. Springer Plus. 5: 1248-1261.
Ahmad-Husni, M.H., Clasoston, N., Amran, M.S. (2014). Effects of pyrolysis temperature on the physicochemical properties of 45 empty fruit bunch and rice husk biochars. Waste Managament Research. 4 (32): 331-339.
Bharathidasan, P., Idris, M. B., Kim, D., Sivakkumar, S., Devaraj, S. (2018). Enhanced capacitance properties of nitrogen doped reduced graphene oxide obtained by simultaneous reduction and nitrogen doping. FlatChem. 11: 24-31. Doi: 10.1016/j.flatc.2018.10.001
Della, V. ., Kühn, I., & Hotza, D. (2002). Rice husk as an alternate source for active silica production. Materials Letters. 57: 818-821.
Eigler, S. & Dimiev, A.M. (2017). Characterization Techniques. In Graphene Oxide fundamentals and applications (1ª ed., pp.100-103). Ayrat M. Dimiev and Siegfried Eigler (Editors). West Sussex. Wiley.
Johra, F. T., Lee, J., Jung, W. (2014). Facile and safe graphene preparation on solution-based platform. Journal of Industrial and Engineering Chemistry. 20 (5): 2883-2887. Doi: 10.1016/j.jiec.2013.11.022
Lozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria, tesis de prerado, Universidad Nacional Abierta y a Distancia (UNAD), Yopal - Casanare, p 32. https://doi.org/10.1017CBO9781107415324.004
Olimex. Technical Data MQ-135 Gas Sensor. (2017). Accessed on: August, 2017. Availableat: https://www.olimex.com/Products/Components/Sensors/SNSMQ135/resources/SNS-MQ135.pdf
Prasad, R. & Pandey, M. (2012). Rice husk ash as a renewable source for the production of valueadded silica gel and its applications: An overview. Bulletin of Chemical Reaction Engineering & Catalysis. 7 (1): 1-25.
Prías Barragán, J., Rojas González, C., Echeverry Montoya, N., Fonthal, G., & Ariza Calderón, H. (2011). Identificación de las variables óptimas para la obtención de carbón activado a partir del precursor guadua Angustifolia kunt. Revista Academia Colombiana de Ciencias. 25 (135): 157-166.
Prías-Barragán, J. J., Gross, K., Ariza-Calderón, H., Prieto, P. (2015). Synthesis and vibrational response of graphite oxide platelets from bamboo for electronic applications. physica status solidi (a). 213 (1): 85-90. Doi: 10.1002/pssa.201532433
Quiceno, D. & Mosquera, M. (2010). Alternativas tecnológicas para el uso de la cascarilla de arroz como combustible. Trabajo de grado, Universidad Autónoma de Occidente.
Rockstraw, D.A., Pignali K.C., Deng, S. (2005). Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Science and Technology. 39 (10): 1010-1014.
Rybarczyk, M. K., Li, Y., Qiao, M., Hu, Y., Titirici, M., Lieder, M. (2019). Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. Journal of Energy Chemistry. 29: 17-22. Doi: 10.1016/j.jechem.2018.01.025
Souza, C. B. de, Nakagawa, M. A., Vargas, L. R., Hilário, R. B., Impère, A. G. D., Matsushima, J. T., Quirino, S. F., Gama, A. M., Baldan, M. R., & Gonçalves, E. S. (2019). Evolution of dielectric properties of thermally reduced graphene oxide as a function of pyrolisis temperature. Diamond and Related Materials. 93: 241-251. Doi: 10.1016/j.diamond.2019.01.015
Wang, W., Martin, J. C., Zhang, N., Ma, C., Han, A., & Sun, L. (2011). Harvesting silica nanoparticles from rice husk. Journal Nanoparticle Research. 13: 6981-6990.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales