Abstract
Currently, global research is being carried out to develop new materials with suitable properties for manufacturing photovoltaic devices to obtain energy from renewable sources and replace conventional ones. For environmental reasons, the materials should be non-polluting and abundant, and zinc sulfide (ZnS) meets these requirements. In this context, we synthesized ZnS thin films using the sol-gel method aiming at evaluating the effect of some zinc and sulfur precursors, complexing agents, and thermal treatment on ZnS obtention. The resulting solids were treated in an oxidizing atmosphere and characterized by X-ray diffraction (XRD) to establish the most suitable reaction protocol for ZnS preparation. Based on these results we were able to deposit ZnS coatings on glass-quartz substrates using the spin-coating technique. The films were also subjected to heat treatment based on gaseous nitrogen and elemental sulfur. ZnS coatings were characterized through XRD, scanning electron microscopy (SEM), X-Ray dispersive spectroscopy (EDS), and UV-Vis spectroscopy. Our results showed that the films deposited had suitable properties to be used as a buffer layer in solar cells.
Keywords
References
Botero, M., Gordillo, G., Calderón, C. (2013). Preparación y estudio de películas delgadas de ZnS y ZnS: In. Revista Colombiana de Física. 45 (2):168-171.
Goktas, A., Aslan, F., Yasar, E., Mutlu, I. H. (2012). Preparation and characterization of thickness dependent nano-structured ZnS thin films by sol–gel technique. Mater. Electron. 23: 1361-1366.
Gómez-Barojas, E., Sánchez-Mora, E., Castillo-Abriz, C., Flores-Rodríguez, E., Silva-González, R. (2013). Synthesis and Study of Optical and Photocatalytic Properties of Mn and Sm Doped ZnS Grown by Sol-Gel. Journal of Superconductivity and Novel Magnetism. 26: 2337-2340.
Green, M. A., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A. W. Y. (2019). Solar cell efficiency tables (version 55). Progress in Photovoltaics: Research and Applications. 27: 565-575.
Hurma, T. (2018). Structural and optical properties of nanocrystalline ZnS and ZnS:Al films. Journal of Molecular Structure. 1161: 279-284.
Husain, A. A. F., Hasan, W. Z. W., Hamídon, M. N., Pandey, S. S. (2018). A review of transparent solar photovoltaic technologies. Renewable and Suistainable Energy Reviews. 94: 779-791.
Hyun, D., Hoon, J., Nam, K., San, K., Guk, Y. (2012). Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering. Nanoscale Res Lett. 7 (1): 26-32.
Kabir, E., Kumar, P., Kumar, S., Adelodun, A., Kim, K. (2018). Solar Energy: Potential and future prospects. Renewable and Sustainable Energy Reviews. 82: 894-900.
Lee, T. D., Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. Renewable and Suistainable Energy Reviews. 70: 1286-1297.
Liu, W., Yang, C., Hsieh, S., Chen, W., Fern, C. (2013). Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH. Applied Surface Science. 264: 213-218.
Liu, T., Ke, H., Zhang, H., Duo, S., Sun, Q., Fei, X., Zhou, G., Liu, H., Fan, L. (2014). Effect of four different zinc salts and annealing treatment on growth, structural, mechanical, and optical properties of nanocrystalline ZnS thin films by chemical bath deposition. Materials Science in Semiconductor Processing. 26: 301-311.
Márquez, E., Shaaban, E. R., Abousehly, A. M. (2014). Structural and optical properties of ZnS thin films. Int. J. New. Hor. Phys. 1: 17-24.
Pathak, T., Kumar, V., Purohit, L. P., Swart, H. C., Kroon, R. E. (2016). Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering. Physica E. 84: 530-536.
Powalla, M., Paetel, S., Ahlswede, E., Wuerz, R., Wessendorf, C. D., Friedlmeier, T. M. (2018). Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews. 5 (4): 1-30.
Reinisch, M., Perkins, C. L., Steirer, K. X. (2016). Quantitative Study on the Chemical Solution Deposition of Zinc Oxysulfide. ECS Journal of Solid State Science and Technology. 5 (2):58-66.
Rodgers, G. E. (1996). Química inorgánica: Introducción a la Química de coordinación, del estado sólido y descriptiva (pp. 663-664). Madrid, España: Editorial Mc Graw Hill.
Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R. (2005). Fundamentos de química analítica (pp. 1090-1091). Ciudad de México, México: Editorial Cengage Learning.
Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics. E: Scientific Instruments. 16: 1214-1223.
Vargas-Perea, H. A., Rocha-Gonzáles, R., Botero-Londoño, M. A., Sepúlveda-Sepúlveda, A., Calderón, C. L. (2018). Herramienta de software para determinar constantes ópticas en celdas solares tipo película delgada. DYNA. 85 (206): 321-328.
Vasconcelos, P. G., Aguirre, M. O. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Suistainable Energy Reviews. 74: 590-601.
Vishwakarma, R. (2017). Thickness-dependent structural, electrical, and optical properties of ZnS thin films deposited by thermal evaporation. Ukrainian Journal of Physics. 62: 422-431.
Zhang, R., Wang, B., Zhang, H., Wei, L. (2005). The structure and optical properties of the nanocrystalline ZnS films prepared by sulfurizing the as-deposited ZnO films. Applied Surface Science. 241: 435-441.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales