Abstract
In this paper, we introduce the non-conformable double Laplace transform, developed to solve differential equations of functions of two variables within the framework of local fractional calculus. Its main properties are established, and examples are provided to illustrate the solution of non-conformable partial differential equations.
References
Abdeljawad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66. https://doi.org/10.1016/j.cam.2014.10.016.
Anastassiou, G. A. (2011). Advances on Fractional Inequalities. Springer.
Atangana, A. and Baleanu, D. (2015). New properties of conformable derivatives. Open Mathematics, 13, 889–898. https://doi.org/10.1515/math-2015-0081.
Diethelm, K. (2010). The Analysis of Fractional Differential Equations. Springer.
González, F., Mohammed, P. O., and Nápoles Valdés, J. (2020). Nonconformable fractional Laplace transform. Kragujevac Journal of Mathematics, 46, 341–354. https://doi.org/10.46793/KgJMat2203.341M.
Gozutok, N. Y. and Gozutok, U. (2018). Multivariable conformable fractional calculus. Filomat, 32(1), 45–55.
Guzmán, P., Langton, G., Lugo Motta Bittencurt, L., Medina, J., and Nápoles Valdés, J. (2018). A new definition of a fractional derivative of local type. Journal of Mathematical Analysis, 9(2), 88–98.
Guzmán, P. and Nápoles Valdés, J. (2019). A note on the oscillatory character of some nonconformable generalized Liènard system. Advanced Mathematical Models and Applications, 4(2), 127–133.
Guzmán, P. M., Lugo Motta Bittencurt, L. M., and Nápoles Valdés, J. E. (2020a). On the stability of solutions of fractional nonconformable differential equations. Studia Universitatis Babeș-Bolyai, 65(4), 495–502.
Guzmán, P. M., Lugo Motta Bittencurt, L. M., Nápoles Valdés, J. E., and Vivas-Cortez, M. (2020b). On a new generalized integral operator and certain operating properties. Axioms, 9, 1–10.
Injrou, S. and Hatem, I. (2022). Solving some partial differential equations by using double Laplace transform in the sense of nonconformable fractional calculus. Mathematical Problems in Engineering, 2022, 1–10. https://doi.org/10.1155/2022/5326132.
Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier.
Leibniz, G. W. (1692). Letter from G. W. Leibniz to G. F. A. L’Hôpital. Mathematical Systems Theory, 1(1), 1–13. Original work written in 1695.
Martínez, F., Mohammed, P. O., and Nápoles Valdés, J. E. (2022). Nonconformable fractional Laplace transform. Kragujevac Journal of Mathematics, 46(3), 341–354.
Martínez, F. and Nápoles Valdés, J. E. (2020). Towards a nonconformable fractional calculus of n-variables. Mathematica Applicanda, 43, 87–98.
Mhalian, M., Hammad, M. A., Horani, M. A., and Khalil, R. (2020). On fractional vector analysis. Journal of Mathematics and Computer Science, 6, 2320–2326.
Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley.
Nápoles Valdés, J., Guzmán, P., and Lugo, L. (2018). Some new results on nonconformable fractional calculus. Advances in Dynamical Systems and Applications, 13(2), 167–175.
Nápoles Valdés, J. E., Guzmán, P. M., and Lugo Motta Bittencurt, L. M. (2020). A note on the qualitative behavior of some nonlinear local improper conformable differential equations. Journal of Fractional Calculus and Nonlinear Systems, 1(1), 13–20. https://doi.org/10.48185/jfcns.v1i1.48.
Ross, B., Samko, S., and Love, E. R. (1994). Functions that have no first order derivative might have fractional derivatives of all order less than one. Real Analysis Exchange, 20(2), 140–157.
Vivas-Cortez, M., Fleitas, A., Guzmán, P. M., Nápoles Valdés, J. E., and Rosales, J. J. (2021a). Newton’s law of cooling with generalized conformable derivatives. Symmetry, 13(6), 1093. https://doi.org/10.3390/sym13061093.
Vivas-Cortez, M., Hernández, J. E., and Velasco, J. (2024). Some results related with n-variables nonconformable fractional derivatives. Advances in Functional Analysis and Fixed-Point Theory.
Vivas-Cortez, M., Lugo, L., Nápoles Valdés, J., and Samei, M. (2022). A multi-index generalized derivative: Some introductory notes. Applied Mathematics and Information Sciences, 16(6), 883–890. https://doi.org/10.18576/amis/160604.
Vivas-Cortez, M., Nápoles, J. E. N., Hernández, J. E., Velasco, J., and Larreal, O. (2021b). On nonconformable fractional Laplace transform. Applied Mathematics, 15(4), 403–409. https://doi.org/10.18576/amis/150401.
Vivas-Cortez, M., Velasco, J., and Jarrín, H. D. (2025a). A new generalized local derivative of two parameters. Applied Mathematics and Information Sciences, 19(3), 713–723. https://doi.org/10.18576/amis/190319.
Vivas-Cortez, M., Velasco-Velasco, J., and Cedeño-Mendoza, S. (2025b). Symmetric conformable derivative. Applied Mathematics and Information Sciences, 19(2), 251–257. https://doi.org/10.18576/amis/190202.
Vivas-Cortez, M., Árciga, M. P., Nájera, J. C., and Hernández, J. E. (2023). On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative. Demonstratio Mathematica, 56(1). https://doi.org/10.1515/dema-2022-0212.
Yang, X.-J. (2011a). Local Fractional Functional Analysis and Its Applications. Asian Academic Publisher.
Yang, X.-J. (2011b). Local fractional integral transforms. Progress in Nonlinear Science, 4(1), 1–225.
Yang, X.-J. (2016). A new local fractional derivative and its application to diffusion in fractal media. Computational Method for Complex Science, 1(1).
Yang, X.-J., Baleanu, D., and He, J.-H. (2013). Transport equations in fractal porous media within fractional complex transform method. Proceedings of the Romanian Academy Series A, 14(4), 287–292.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

