Abstract
Space weather, driven by solar activity, poses a significant threat to the stability and reliability of modern technological infrastructures. This article provides a comprehensive review of the topic, examining the relationship between solar phenomena and their impacts on critical sectors such as telecommunications, aviation, energy, and the global economy. Historical events, including the 1859 Carrington storm and the Miyake events, are analyzed alongside recent disturbances associated with Solar Cycle 25. The specific vulnerability of Colombia to these phenomena is also discussed, alongside a strategic proposal for the establishment of the Colombian Space Weather Service (SCCE) as a key initiative to enhance national resilience to extreme solar activity and to promote scientific and technological development in space-related fields.
References
Abdu, M. A. (2012). Equatorial ionosphere–thermosphere system: Electrodynamics and irregularities. Journal of Atmospheric and Solar-Terrestrial Physics, 90, 1-12.
Alva-Carmona, M. R., Vargas‑Domínguez, S., Villafane, J., Cortés‑Rojas, E., Pinzón‑Cortés, S., Gómez‑Pérez, N., Torres Moya, E., Franco Prieto, C. A. (2025). El Observatorio Geomagnético Nacional de Fúquene: un recorrido por su pasado, su presente y su futuro. Revista de la Academia NColombiana de Ciencias Exactas, Físicas y Naturales, 49(190), 146-162. https://doi.org/10.18257/raccefyn.3166
Asorey, H., Calderón-Ardila, R., Forero-Gutiérrez, K., Núñez, L. A., Peña-Rodríguez, J., Salamanca-Coy, J., Sanabria-Gómez, D., Sánchez-Villafrades, J., Sierra-Porta, D. (2018). MiniMuTe: Un prototipo de telescopio de muones para el estudio de estructuras volcánicas con flujos de rayos cósmicos. Scientia et Technica, 23(3), 386-393. https://doi.org/10.22517/23447214.17497
Baker, D.N., Daly, E., Daglis, I., Kappenman, J.G. and Panasyuk, M. (2004). Effects of Space Weather on Technology Infrastructure. Space Weather, 2: https://doi.org/10.1029/2003SW000044
Benz, A. O. (2017). Flare observations. Living Reviews in Solar Physics, 14(2), 1-72.
Bhattacharyya, A. (2022). Equatorial plasma bubbles: A review. Atmosphere 13 (10), 1637.
Boteler, D. H. (2019). Geomagnetic hazards to power grids and the effects of space weather. Journal of Space Weather and Space Climate, 9, A24.
Comisión Nacional de Actividades Espaciales. (s. f.). Clima espacial. https://www.argentina.gob.ar/ciencia/conae/aplicaciones-de-lainformacion-satelital/clima-espacial
Carrillo, M., Lara, A., González-Esparza, J. (2016). SCiESMEX: The Mexican Space Weather Service. Space Weather, 14(2), 112-124.
M., Lara, A., González-Esparza, J. (2016). SCiESMEX: The Mexican Space Weather Service. Space Weather, 14(2), 112-124.
Coster, A. J. & Erickson, P. J. (2022). Ionospheric irregularities and their impact on GNSS signals during solar cycle 25. Radio Science, 57(2), 112-125.
Eastwood, J. P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.A., Gibbs, M., Burnett, C. (2017). The economic impact of space weather: Where do we stand? Risk Analysis, 37(2), 206-221. https://doi-org/10.1111/risa.12765
Erdélyi, R., Korsós, M. B., Huang, X., Yang, Y., Pizzey, D., Wrathmall, S. A., Hughes, I. G., Dyer, M. J., Dhillon, V. S., Belucz, B., Brajša, R., Chatterjee, P., Cheng, X., Deng, Y., Vargas-Domínguez, S., Joya, R., Gömöry, P., Gyenge, N. G., Hanslmeier, A., Kucera, A., …, Zuccarello, F. (2022). The Solar Activity Monitor Network – SAMNet. Journal of Space Weather and Space Climate, 12, 2. https://doi.org/10.1051/swsc/2021025
European Space Agency (ESA) – Science Office. (2018). Space weather effects. ESA. Multimedia Gallery. https://www.esa.int/ESAMultimedia/Images/2018/11/Spaceweather effects (Image credit: ESA/Science Office. Licensed under CC BY-SA 3.0 IGO.
ESA (2023). Solar storms and their effects on aviation and GNSS. European Space Agency Report.
EU Council (2023). Solar storms: A new challenge on the horizon? European Union.
Fang, T. W., Kubaryk, A., Goldstein, D., Li, Z., Fuller‐Rowell, T., Millward, G., Singer, H. J., Steenburgh, R., Westerman, S., Babcock, E. (2022). Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather, 20(11), e2022SW003193.
González, G. (2022). Storm-time variability of ionospheric irregularities over South America. Journal of Atmospheric and Solar-Terrestrial Physics, 241. 10.1016/j.jastp.2022.105980.
González-Esparza, J. A. (2022). La Tormenta Solar Perfecta. UNAM.
Gonzalez-Esparza, J. A., Sanchez-Garcia, E., Sergeeva, M., Corona-Romero, P., Gonzalez-Mendez, L. X., Valdes-Galicia, J. F., Aguilar-Rodriguez, E., Rodriguez-Martinez, M., Ramirez-Pacheco, C., Castellanos, C. I., Pazos, M., Mendoza, B., Gatica-Acevedo, V. J., Melgarejo-Morales, A., Caraballo, R., Andrade-Mascote, E., Villanueva-Hernandez, P., Bonifaz-Alfonzo, R., …, Hernandez-Quintero, E. (2024). The mother's day geomagnetic storm on 10 May 2024: Aurora observations and low latitude space weather effects in Mexico. Space Weather, 22, e2024SW004111. https://doi.org/10.1029/2024SW004111.
González, G. (2025). Global Patterns of Equatorial Plasma Bubbles from ICON Data. Advances in Space Research, 76(4), 2265-2279. https://doi.org/10.1016/j.asr.2025.06.055
Granados-Hernández, N. & Vargas-Domínguez, S. (2020). Análisis de polaridades magnéticas en regiones activas para la predicción de fulguraciones solares. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), 984-995. https://doi.org/10.18257/raccefyn.1161
Green, J. & Boardsen, S. (2005). Duration and extent of the great auroral storm of 1859. Advances in Space Research, 38(2), 130-135.
Guo, Y., Thompson, P., Wirzburger, J., Pinkine, N., Bushman, S., Goodson, T., Haw, R., Hudson, J., Jones, D., Kijewski, S., Lathrop, B., Lau, E., Mottinger, N., Ryne, M., Shyong, W., Valerino, P., Whittenburg, K. (2021). Execution of Parker Solar Probe’s unprecedented flight to the Sun and early results. Acta Astronautica, 179, 425-438. https://doi.org/10.1016/j.actaastro.2020.11.007.
Hathaway, D. H. (2015). The solar cycle. Living Reviews in Solar Physics, 12(1), 1-87.
Hayakawa, H., Ebihara, Y., Mishev, A., Koldobskiy, S., Kusano, K., Bechet, S., Yashiro, S., Iwai, K., Shinbori, A., Mursula, K., Miyake, F., Shiota, D., Silveira, M., Stuart, R., Oliveira, D., Akiyama, S., Ohnishi, K., Ledvina, V., Miyoshi, Y. (2024). The solar and geomagnetic storms in May 2024: A flash data report. The Astrophysical Journal, 979(1), id.49.
Hernández, H. D., Calderón, J. F., Chacón, C. A. (2022). Estudio temporal del campo magnético terrestre en Colombia: Observatorio Geomagnético Fúquene. Ciencia en Desarrollo, 13(1), 31-41. https://doi.org/10.19053/01217488.v13.n1.2022.12941
Hincapié, T. & Juan, S. (2023). Design and Construction of a Multi-element Phased Array Radio Interferometer. Master Thesis in Astronomy. National University of Colombia.
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Dávila, J. M., Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A., Harrison, R. A., Waltham, N. R., Lang, J. … Carter, T. (2008). Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Science Reviews, 136(1), 67-115. https://doi.org/10.1007/s11214-008-9341-4
Kepkar, A., Arras, C., Wickert, J., Schuh, H., Alizadeh, M., Tsai, L. (2020). Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3 / COSMIC GPS radio occultation data. Annales Geophysicae, 38, 611-623. https://doi.org/10.5194/angeo-38-611-2020
Kwak, Y. S., Kim, J. H., Kim, S., Miyashita, Y., Yang, T., Park, S. H., Talha, M., Lim, E-K, Jung, J., Kam, H., Lee, J., Lee, H., Yoo, J-H., Lee, H., Kwon, R-Y., Seough, J., Nam, U-W., Lee, W.K., Hong, J., Sohn, J., Kwak, J., …, Talha, M. (2024). Observational overview of the May 2024 G5-level geomagnetic storm: from solar eruptions to terrestrial consequences. Journal of Astronomy and Space Sciences, 41(3), 171-194.
Knipp, D. J. (2021). Understanding space weather and its effects: A multidisciplinary approach. Cambridge University Press.
NOAA Space Weather Prediction Center, Swedish Civil Contingencies Agency and UK Met Office. (2016). Space weather & critical infrastructures – Findings and outlook. Publications Office. https://data.europa.eu/doi/10.2788/152877
Lanzerotti, Louis & Erickson, Philip & Coster, Anthea. (2021). Introduction: Space Weather Underlies Reliable Technologies. 10.1002/9781119815570.ch0.
Lloyd’s & AER. (2013). Solar storm risk to the North American electric grid. Lloyd’s & AER.
Mertens, C. J., Slaba, T. C., & Hu, S. (2018). Active dosimeter-based estimate of astronaut acute radiation risk for real-time solar energetic particle events. Space Weather, 16, 1291-1316. https://doi.org/10.1029/2018SW001971.
Miyake, F., Nagaya, K., Masuda, K., Nakamura, T. (2012). A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature, 486(7402), 240-242.
Moldwin, M. B. & Tsu, J. S. (2016). Stormtime equatorial electrojet ground‐induced currents: Increasing power grid space weather impacts at equatorial latitudes. En: Ionospheric Space Weather: Longitude and Hemispheric Dependences and Lower Atmosphere Forcing, Editor(s): Timothy Fuller-Rowell, Endawoke Yizengaw, Patricia H. Doherty, Sunanda Basu. American Geophysical Union.
Molina-Córdoba, J. N., Triana-Ortiz, C., Buitrago-Casas, J. C. (2025). Ruido espectral en radiofrecuencias en el desierto de la Candelaria: un estudio preliminar para la instalación de radiotelescopios. eSPECTRA, 3(1), 18-22.
Moreno, F., Sánchez, Cristancho., Vargas-Domínguez, S. (2016). The Grand Aurorae Borealis Seen in Colombia in 1859. Advances in Space Research, 57(1), 257-267.
Mubashir, A., Ashok, A., Bourgeois, A., Chien, Y. T., Connors, M., Potdevin, E., He, X., Martens, P., Mikler, A., Perera, A. G. U., Sadykov, V., Sarsour, M., Sharma, D., Tiwari, C. (2023). Muon flux variations measured by low-cost portable cosmic ray detectors and their correlation with space weather activity. Journal of Geophysical Research: Space Physics, 128(12), e2023JA031943. https://doi.org/10.1029/2023JA031943
Mubashir, A., Ashok, A., Connors, M., He, X., Hettiarachchi, H. A. T. G., Martens, P., Mudiyanselage, E. H., Perera, U. A. G., Potdevin, E., Sadykov, V. M., Sarsour, M., Savić, M., & Veselinović, N. (2025). Time lag analysis of the space weather effects on muon and neutron flux at different geomagnetic cutoff rigidities. Advances in Space Research, 76(12), 7587–7599. https://doi.org/10.1016/j.asr.2025.04.032
NASA/GSFC/SDO. (2017). X-class solar flare observed on 6 September 2017. Solar Dynamics Observatory, NASA Goddard Space Flight Center. https://sdo.gsfc.nasa.gov (Image credit: NASA/GSFC/SDO).
National Academies of Sciences, Engineering, and Medicine. (2024). The next decade of discovery in solar and space physics: Exploring and safeguarding humanity’s home in space. National Academies Press.
National Research Council (2008). Severe space weather events: Understanding societal and economic impacts. National Academies Press.
NOAA Space Weather Prediction Center. (2021, 28 de octubre). S1 Minor Radiation Storm – 28 October 2021. National Oceanic and Atmospheric Administration. https://www.swpc.noaa.gov/news/s1-minor-radiation-storm-
NOAA. (2022). Starlink satellite failure report: February 2022. National Oceanic and Atmospheric Administration.
Oughton, E. J., Skelton, A., Horne, R. B., Thomson, A. W., Gaunt, C. T. (2017). Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather, 15(1), 65-83.
Perfecto, aquí tienes tus referencias formateadas con los saltos de renglón internos eliminados y dos saltos de renglón entre cada una:
Palacios-Caicedo, J. C. (2010). Cálculo del contenido total de electrones (TEC) en la ionosfera colombiana mediante la utilización de una red de estaciones de rastreo satelital (REICO) (Master dissertation). Universidad Nacional de Colombia.
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664.
Picanço, G., Denardini, C., Nogueira, P., Resende, L., Carmo, C., Chen, S., Barbosa-Neto, P., Romero-Hernández, E. (2022). Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24-25 over the Brazilian region using a Disturbance Ionosphere indeX. Annales Geophysicae, 40, 503-517. https://doi.org/10.5194/angeo-40-503-2022
Pimenta, A. A., Fagundes, P. R., Bittencourt, J. A., Sahai, Y. (2001). Relevant aspects of equatorial plasma bubbles under different solar activity conditions. Advances in Space Research, 27(6-7), 1213-1218.
Pinzón-Cortés, S., Gómez-Pérez, N., Vargas-Domínguez, S. (2025). Ring current local time dependence during geomagnetic storms using equatorial Dst-proxies. Acta Geodaetica et Geophysica. https://doi.org/10.1007/s40328-024-00459-6
Polefka, T. G., Meyer, T. A., Agin, P. P., Bianchini, R. J. (2012). Effects of solar radiation on the skin. Journal of Cosmetic Dermatology, 11(2), 134-143.
Portilla, J. G. (2020). Firmamento y atlas terrestre: la astronomía que practicó Francisco José de Caldas. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/80656
Pradipta, R. (2024). Spatial Imaging and Zonal Drift Motion Tracking of Equatorial Plasma Bubbles over South America Using Specially Detrended GPS TEC Data. United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 216-216. https://doi.org/10.23919/USNC-URSINRSM60317.2024.10465163
Priest, E. (2014). Magnetohydrodynamics of the Sun. Cambridge University Press.
Rodríguez, J. (2024). El clima espacial: La influencia del Sol en la Tierra y otros planetas. Editorial Publicia. https://doi.org/10.36198/978363955737
Sahai, Y., Fagundes, P., Bittencourt, J. (2000). Transequatorial F-region ionospheric plasma bubbles: solar cycle effects. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1377-1383. https://doi.org/10.1016/S1364-6826(00)00179-6
Sánchez-González, J. (2025). Red Radio-Interferométrica Solar del Observatorio Astronómico Nacional (RRIS-OAN): intercalibración e integración instrumental (Tesis de maestría), Universidad Nacional de Colombia.
Schrijver, C. J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A, Gopalswamy, N, Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.D., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T, Nandy, D., Obara, T., … Vilmer, N. (2015). Understanding space weather to shield society: A global road map for 2015-2025. Advances in Space Research, 55(12), 2745-2807.
Schwenn, R. (2006). Space weather: The solar perspective. Living Reviews in Solar Physics, 3(1), 1-72.
Smith, J. & Heelis, R. A. (2017). Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. Journal of Geophysical Research: Space Physics, 122, 5743-5755.
Thomson, A., Gaunt, C., Cilliers, P., Wild, J., Opperman, B., McKinnell, L., Kotze, P., Ngwira, C., Lotz, S. (2010). Present day challenges in understanding the geomagnetic hazard to national power grids. Advances in Space Research, 45(9), 1182-1190. https://doi.org/10.1016/j.asr.2009.11.023
Toriumi, S. & Wang, H. (2019). Flare-producing solar active regions. Living Reviews in Solar Physics, 16(1), 1-54.
Tsurutani, B. T., González, W. D., Lakhina, G. S., Alex, S. (2003). The extreme magnetic storm of 1–2 September 1859. Journal of Geophysical Research: Space Physics, 108(A7), 1268.
Universidad Nacional. (2024). Laboratorio de Instrumentación Geofísica. Universidad Nacional de Colombia, Facultad de Ciencias. https://ciencias.bogota.unal.edu.co/laboratorios/geociencias/instrumentacion_geofisica
Usoskin, I. G. (2017). A history of solar activity over millennia. Living Reviews in Solar Physics, 14(1), 1-97.
Vargas-Domínguez, S., Calvo-Mozo, B., Martínez Oliveros, J. C., Buitrago-Casas, J. C. (2023). El Grupo de Astrofísica Solar (GoSA) del Observatorio Astronómico Nacional de Colombia: 10 años indagando sobre la ciencia del Sol. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(183), 445-452. https://doi.org/10.18257/raccefyn.1930
Aquí tienes tus referencias formateadas según el mismo estilo, con los saltos de renglón internos eliminados y dos saltos de renglón entre cada una:
Velli, M., Harra, L., Vourlidas, A., Schwadron, N., Panasenco, O., Liewer, P., Müller, D., Zouganelis, I., Cyr, O., Gilbert, H., Nieves-Chinchilla, T., Auchère, F., Berghmans, D., Fludra, A., Horbury, T., Howard, R., Krucker, S., Maksimović, M., Owen, C., Rodríguez-Pacheco, J., …, Williams, D. (2020). Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astronomy & Astrophysics, 642, A4, 1-13. https://doi.org/10.1051/0004-6361/202038245
WDC for Geomagnetism, Kyoto. (2024). Dst index service: Hourly Equatorial Dst Values (PROVISIONAL) MAY 2024. https://wdc.kugi.kyoto-u.ac.jp/dst_provisional/202405/index.html
Yazev, S., Elena, I., Khos-Erdene, B. (2023). Solar activity cycle 25: the first three years. Solar-Terrestrial Physics, 9(3), 3-9.
Young, C. (2009). Solar ultraviolet radiation and skin cancer. Occupational Medicine, 59(2), 82-88.
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C. C., Yashiro, S., Zhukov, A. N. (2007). Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005. Journal of Geophysical Research, 112, A10102. https://doi.org/10.1029/2007JA012321

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

