A survey on information geometry: statistical manifolds and statistical models
PDF

Keywords

Fisher metric
statistical models
Dual connection
Statistical manifold
Exponential family
Mixture family

How to Cite

Martínez-Alba, N., & Garatejo-Escobar, O. (2025). A survey on information geometry: statistical manifolds and statistical models. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3260

Societal impact


Abstract

This survey presents an exposition of the foundational concepts of information geometry from a probabilistic viewpoint, as well as recent developments in differential geometry related to this área of information science. We conclude with a non-exhaustive but motivating list of applications of the theory in probability.

PDF

References

Amari, S.-i., & Cichocki, A. (2010). Information geometry of divergence functions. Bulletin of the polish academy of sciences. Technical sciences, 58(1), 183–195.

Amari, S.-i., & Nagaoka, H. (2000). Methods of information geometry (Vol. 191). American Mathematical Soc.

Ay, N., Jost, J., Vˆan Lˆe, H., & Schwachh¨ofer, L. (2017). Information geometry (Vol. 64). Springer.

Betancourt, M. (2013). A general metric for riemannian manifold hamiltonian monte carlo. In International conference on geometric science of information (pp. 327–334).

Calin, O., & Udris¸te, C. (2014). Geometric modeling in probability and statistics (Vol. 121). Springer.

Garatejo Escobar, O. C. (2024). Estructura dual en modelos estad´ısticos sobre productos warped (Unpublished doctoral dissertation). Universidad Nacional de Colombia.

Heyde, C. C. (1997). Quasi-likelihood and its application: a general approach to optimal parameter estimation. Springer.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007), 453–461.

Jost, J., & Jost, J. (2008). Riemannian geometry and geometric analysis (Vol. 42005). Springer.

Kolp, M., Snoeck, M., Vanderdonckt, J., & Wautelet, Y. (2019). An overview of scientific areas in research challenges in information science. International Conference on Research Challenges in Information Science, 13(), 1–5.

Li, M., Sun, H., & Peng, L. (2022). Fisher–rao geometry and jeffreys prior for pareto distribution. Communications in Statistics-Theory and Methods, 51(6), 1895–1910.

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P., & Wagenmakers, E.-J. (2017). A tutorial on fisher information. Journal of Mathematical Psychology, 80(), 40–55.

Nielsen, F. (2020). An elementary intrduction to information geometry, sony computer science laboratories inc. Japan, MDPI Journal.

Nielsen, F. (2022). The many faces of information geometry. Not. Am. Math. Soc, 69(1), 36–45.

Rao, C. R. (1992). Information and the accuracy attainable in the estimation of statistical parameters. In Breakthroughs in statistics: Foundations and basic theory (pp. 235–247). Springer.

Sakamoto, M., & Matsuzoe, H. (2015). A generalization of independence and multivariate student’st-distributions. In International conference on geometric science of information (pp. 740–749).

Shima, H. (2007). The geometry of hessian structures. World Scientific.

Snoussi, H., & Mohammad-Djafari, A. (2003). Information geometry and prior selection. In Aip conference proceedings (Vol. 659, pp. 307–327).

Stoltz, G., Rousset, M., et al. (2010). Free energy computations: A mathematical perspective. World Scientific.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Downloads

Download data is not yet available.