Model selection for fungal laccase activity: shallow learners versus neural networks under nested cross-validation
PDF

Keywords

Central composite design
Fermentation
Machine learning
White-rot fungi

How to Cite

Montenegro, J. C., Miranda, M., Torres, J. ., & Caballero, R. E. (2026). Model selection for fungal laccase activity: shallow learners versus neural networks under nested cross-validation. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3245

Societal impact


Abstract

Due to their catalytic properties, fungal laccases are used in various technological fields, from bioremediation to biofuel production. Here, we revisited the model selection for extracellular laccase activity in Trametes villosa using a central composite design (CCD) with factors including temperature, initial pH, and inoculum volume. To address concerns about overfitting and evaluation leakage in small-N RSM studies, we adopted a strict nested cross-validation (CV) protocol (outer 5-fold for generalization and inner 3-fold for tuning) and compared three shallow learners: quadratic ridge regression, RBF-kernel support-vector regression (SVR), and random forests, against two compact multilayer perceptrons (MLPs). To preserve physical plausibility, we modeled the response as log(y + ε) with ε = 0.1, and reported RMSE and R² from the outer 5-fold CV on the back-transformed scale. Across outer folds, SVR (RBF) achieved the lowest RMSE with the smallest fold-to-fold variance; the random forests were competitive; MLPs were more variable, and the ridge underfitted. SHAP analyses for the best model highlighted temperature as the dominant driver, with pH and inoculum showing secondary, non-monotonic contributions. Our results indicate that shallow nonlinear methods generalize best on small RSM datasets and should be preferred for early-stage process optimization.

PDF

References

Agrawal, K., Chaturvedi, V., Verma, P. (2018). Fungal laccase discovered but yet undiscovered. Bioresources & Bioprocessing, 5, 4. https://doi.org/10.1186/s40643-018-0190-z

Alazmi, M. (2024). Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost. Frontiers in Artificial Intelligence, 7, 1446063. https://doi.org/10.3389/frai.2024.1446063

Aragao, M. S., Menezes, D. B., Ramos, L. C., Oliveira, H. S., Bharagava, R. N., Ferreira, L. F. R., Teixeira, J. A., Ruzene, D., Silva, D. P. (2020). Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere, 244(2), 125432. https://doi.org/10.1016/j.chemosphere.2019.125432

Caballero, R. E., Jiménez, V., Miranda, M., Rovira, D., Branda, G., de Pérez, J. R. C. (2024). An optimal culture medium for laccase production and sugar cane vinasse biotreatment with Trametes villosa using Plackett–Burman and central composite designs. Applied Environmental Research, 46(1), 001. https://doi.org/10.35762/AER.2024001

Cao, Y., Qiu, B., Ning, X., Fan, L., Qin, Y., Yu, D., Yang, C., Ma, H., Liao, X., You, C. (2024). Enhancing machine-learning prediction of enzyme catalytic temperature optima through amino acid conservation analysis. International Journal of Molecular Sciences, 25(11), 6252. https://doi.org/10.3390/ijms25116252

Cheng, Y., Bi, X., Xu, Y., Liu, Y., Li, J., Du, G., Lv, X., Liu, L. (2022). Artificial intelligence technologies in bioprocess: Opportunities and challenges. Bioresource Technology, 369, 128451. https://doi.org/10.1016/j.biortech.2022.128451

Chenthamara, D., Sivaramakrishnan, M., Ramakrishnan, S., Esakkimuthu, S., Ko, R., Subramaniam, S. (2022). Improved laccase production from Pleurotus floridanus using deoiled microalgal biomass: statistical and hybrid swarm-based neural networks modeling approach. 3 Biotech, 12(12), 346. https://doi.org/10.1007/s13205-022-03404-y

da Silva Pereira, A., Pinheiro, Á. D. T., Rocha, M. V. P., Gonçalves, L. R. B., Cartaxo, S. J. M. (2021). Hybrid neural network modeling and particle swarm optimization for improved ethanol production from cashew apple juice. Bioprocess and Biosystems Engineering, 44(2), 329–342. https://doi.org/10.1007/s00449-020-02445-y

de Menezes, L. H. S., Pimentel, A. B., Oliveira, P. C., Tavares, I. M., Ruiz, H., Irfan, M., Bilal, M., das Chagas, T. P., da Silva, R. G. P., Salay, L. C., de Oliveira, J. R., Franco, M. (2023). The application of chemometric methods in the production of enzymes through solid state fermentation uses the artificial neural network—a review. Bioenergy Research, 16, 279–288. https://doi.org/10.1007/s12155-022-10462-w

Dhakar, K., & Pandey, A. (2013). Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Research, 2013, 869062. https://doi.org/10.1155/2013/869062

Dourado Fernandes, C., Nascimento, V., Menezes, D., Vilar, D., Torres, N., Leite, M., Veja-Baudrit, J., Bilal, M., Iqbal, H., Bharagava, R., Egues, S., Ferreira, L. F. (2020). Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. Journal of Hazardous Materials, 399, 123094. https://doi.org/10.1016/j.jhazmat.2020.123094

Gado, J. E., Knotts, M., Shaw, A. Y., Marks, D., Gauthier, N. P., Sander, C., Beckham, G. T. (2025). Machine learning prediction of enzyme optimum pH. Nature Machine Intelligence, 7, 716–729. https://doi.org/10.1038/s42256-025-01026-6

Gutiérrez-Soto, G., Medina-González, G., Treviño-Ramírez, J., Hernández-Luna, C. (2015). Native macro fungi that produce lignin-modifying enzymes, cellulases and xylanases with potential biotechnological applications. BioResources, 10(4), 6676–6689. https://doi.org/10.15376/biores.10.4.6676-6689

Janusz, G., Pawlik, A., Świderska, U., Polak, J., Sokół, J., Jarosz-Wilkolazka, A., Paszczynski, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21, 966. https://doi.org/10.3390/ijms21030966

Junior, J. A., Vieira, Y. A., Cruz, I. A., Vilar, D., Aguiar, M. M., Torres, N. H., Bharagava, R. N., Lima, A. S., de Souza, R. L., Ferreira, L. F. R. (2020). Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnology Reports, 25, e00411.

Karp, S., Faraco, V., Amore, A., Letti, L., Thomaz-Soccol, V., Soccol, C. (2015). Statistical optimization of laccase production and delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. BioMed Research International, 2015, 1–8. https://doi.org/10.1155/2015/181204

Loi, M., Glazunova, O., Fedorova, T., Logrieco, A. F., Mulè, G. (2021). Fungal laccases: The forefront of enzymes for sustainability. Journal of Fungi, 7, 1048. https://doi.org/10.3390/jof7121048

Lundberg, S. M., Lee, S.-I. (2017). A unified approach to interpreting model predictions. In U. von Luxburg (Ed.), Advances in Neural Information Processing Systems (NeurIPS) (pp. 4768–4777). Curran Associates Inc.

Mayolo-Deloisa, K., González-González, M., Rito-Palomares, M. (2020). Laccases in food industry: bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8, 222. https://doi.org/10.3389/fbioe.2020.00222

Mondal, P., Galodha, A., Verma, V., Singh, V., Show, P., Awasthi, M., Lall, B., Anees, S., Pollmann, K., Jain, R. (2023). Review on machine learning-based bioprocess optimization, monitoring, and control systems. Bioresource Technology, 370, 128523. https://doi.org/10.1016/j.biortech.2022.128523

Moore, D., Robson, G., Trinci, A. (2020). 21st century guidebook to fungi. Cambridge University Press. https://doi.org/10.1017/9781108776387

Palmieri, G., Giardina, P., Bianco, C., Scaloni, A., Capasso, A., Sannia, G. (1998). A novel white laccase from Pleurotus ostreatus. The Journal of Biological Chemistry, 272(50), 31301–31307. https://dx.doi.org/10.1074/jbc.272.50.31301

Paraschiv, G., Ferdes, M., Ionescu, M., Moiceanu, G., Zabava, B. S., Dinca, M. N. (2022). Laccases—versatile enzymes used to reduce environmental pollution. Energies, 15, 1835. https://doi.org/10.3390/en15051835

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Senthivelan, T., Kanagaraj, J., Panda, R. C., Narayani, T. (2019). Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnology Reports, 23, 30–44. https://doi.org/10.1016/j.btre.2019.e00344

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Python Software Foundation, CreateSpace.

Vilar, D., Dourado Fernandes, C., Nascimento, V., Torres, N., Leite, M., Bharagava, R., Bilal, M., Salazar, G., Eguiluz, K., Ferreira, L. F. (2021). Hyper-production optimization of fungal oxidative green enzymes using citrus low-cost byproduct. Journal of Environmental Chemical Engineering, 9, 105013. https://doi.org/10.1016/j.jece.2020.105013

Wadhwa, H., Singh, R., Chopra, C. (2023). Occurrence and applications of fungal laccases: a comprehensive biotechnological review. Biological Forum – An International Journal, 15(4), 463–469.

Wainaina, S., & Taherzadeh, M. (2023). Automation and artificial intelligence in filamentous fungi-based bioprocesses: a review. Bioresource Technology, 369, 128421. https://doi.org/10.1016/j.biortech.2022.128421

Zhang, L., Luo, K., Zhou, Z., Yu, Y., Jiang, F., Banghao, W., Li, M., Hong, L. (2025). A deep retrieval-enhanced meta-learning framework for enzyme optimum pH prediction. Journal of Chemical Information and Modeling, 65(7), 3761–3770. https://doi.org/10.1021/acs.jcim.4c02291

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Downloads

Download data is not yet available.