Abstract
Echinoids are model organisms for studies on fertilization and early ontogeny because gamete release can be easily induced, and their external development is rapid and synchronous. However, embryological research has largely focused on regular echinoids, leaving significant gaps in the understanding of the ontogenetic development of irregular species. Our study aimed to describe the embryonic and early larval development of Encope michelini and to document key morphogenetic events during its ontogeny. Ten adult specimens of E. michelini were collected in November 2023 from La Ahumadera, Cispatá Bay, Colombia, and transported to the Molecular Biology Laboratory at the University of Córdoba. After a 12-hour acclimation period, spawning was induced using a potassium chloride (KCl) solution. The eggs are isolecithal, with an average diameter of 188.37 ± 21.48 μm. Each cleavage cycle lasted approximately 26 minutes, leading to blastula formation at 04:10 HPF and hatching at 06:30 HPF. Gastrulation began at 08:00 HPF, followed by the prism stage at 23:30 HPF. After 52:00 HPF, larvae reached the two-armed echinopluteus stage. Our study constitutes the first detailed embryonic description of an echinoid from the Colombian Caribbean. The developmental features of E. michelini suggest that this species may serve as a promising model for future studies evaluating the effects of climate change and chemical pollutants on marine invertebrate development.
References
Alvarado, J.J. & Solís-Marín, F.A. (2013). Echinoderm research and diversity in Latin America. In Echinoderm research and diversity in Latin America. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20051-9_1
Amy, R.L. (1983). Gamete sizes and developmental time tables of five tropical sea urchins. Bulletin of Marine Science, 33(1),173-176.
Borrero-Pérez, G.H., Benavides-Serrato, M., Díaz-Sánchez, C. (2012). Equinodermos del Caribe Colombiano II: Echinoidea y Holothuroidea. Santa Marta, Serie de Publicaciones Especiales de INVEMAR No 30. 250p.
Byrne, M. & Hernández J.C. (2020). Sea urchins in a high CO2 world: impacts of climate warming and ocean acidification across life history stages. Developments in aquaculture and fisheries Science, 43, 281-297. https://doi.org/10.1016/B978-0-12-819570-3.00016-0
Chiarelli, R., Martino, C., Roccheri, M.C. (2019). Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress and Chaperones, 24(4),675-687. https://doi.org/10.1007/s12192-019-01010-1
Collin, R., Rebolledo A.P., Smith, E., Chan, K.Y.K. (2021). Thermal tolerance of early development predicts the realized thermal niche in marine ectotherms. Functional ecology, 35,1679-1692. https://doi.org/10.1111/1365-2435.13850
Contins, M. & Ventura, C.R.R. (2011). Embryonic, larval, and post-metamorphic development of the sea urchin Cassidulus mitis (Echinoidea; Cassiduloida): an endemic brooding species from Rio de Janeiro, Brazil. Marine biology. 158(10), 2279-2288. https://doi.org/10.1007/s00227-011-1732-5
De Santiago, W.G.A., Muñoz-Alvárez, A.I., Díaz-Martínez, J.P., Benítez-Villalobos, F. (2023). Resemblances in the early development of two sea urchins: Toxopneustes roseus (Euechinoidea: Echinacea) and Rhyncholampas pacificus (Euechinoidea: Irregularia) from different habitats in the southern Mexican Pacific. Developmental Biology, 499, 1-9. https://doi.org/10.1016/j.ydbio.2023.04.005
Dautov, S.S. & Kashenko, S.D. (2008). Development of the sand dollar Scaphechinus mirabilis. Russian Journal of Marine Biology, 34(6), 415-420. https://doi.org/10.1134/S1063074008060114
De Souza, E. (2008). Desenvolvimento embrionário e larval de Encope emarginata (Leske, 1778) (Echinodermata: Echinoidea), e variações morfológicas interpopulacionais ao longo da costa brasileira entre 13º s e 30º s. Tese apresentada ao Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Museu Nacional, Universidade Federal do Rio de Janeiro. 133p.
Domínguez, A., Rosas, J., Velásquez, A., Cabrera, T., Mata. (2007). Desarrollo, supervivencia y crecimiento del erizo Lytechinus variegatus (Lamarck, 1816) (Echinodermata: Echinoidea) alimentado con microalgas a dos salinidades y temperaturas diferentes. Revista de biología marina y oceanografía, 42(1), 49-57. https://doi.org/10.4067/S0718-19572007000100006
Eckert, G. L. (1995). A novel larval feeding strategy of the tropical sand dollar, Encope michelini (Agassiz): Adaptation to food limitation and an evolutionary link between planktotrophy and lecithotrophy. Journal of Experimental Marine Biology and Ecology, 87(1), 103-128. https://doi.org/10.1016/0022-0981(94)00174-C
Emlet, R.B. (1986). Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus (Linnaeus) and a comparison with obligate planktotrophy in Clypeaster subdepressus (Gray) (Clypeasteroida: Echinoidea). Journal of Experimental Marine Biology and Ecology, 95(2), 183-202. https://doi.org/10.1016/0022-0981(86)90202-9
Galarza-Verkovitch, D.C. (2014). Modularidad y heterocronía en dos eventos del desarrollo embrionario de dos especies de erizo de mar (Familia: Echinometridae) con desarrollo planctotrófico y diferente tamaño de huevo. Tesis de Licenciatura en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Puce, Quito, Ecuador. 99 p.
Galindo-Anaya, A., Nisperuza-Pérez, C.A., Quirós-Rodríguez, J.A. (2020). Aspectos poblacionales de Encope michelini (Clypeasteroida: Mellitidae) y asociación con el pinotérido Dissodactylus crinitichelis en el sector La Ahumadera, bahía de Cispatá, Caribe colombiano. Revista Mexicana de Biodiversidad, 91, e913456. https://doi.org/10.22201/ib.20078706e.2020.91.3456
Gambardella, C., Marcellini, F., Falugi, C., Varrella, S., Corinaldesi, C. (2021). Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. Environmental Pollution, 287,117-608. https://doi.org/10.1016/j.envpol.2021.117608
George, S.B., Young, C.M., Fenaux, L. (1997). Proximate composition of eggs and larvae of the sand dollar Encope michelini (Agassiz): the advantage of higher investment in plankotrophic eggs. Invertebrate Reproduction & Development, 32(1), 11-19. https://doi.org/10.1080/07924259.1997.9672599
Ghorani, V., Mortazavi, M.S., Mohammadi, E., Sadripour, E., Soltani, M., Mahdavi, N. S., Ghassemzadeh, V. (2012). Determination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei. Iranian Journal of Fisheries Sciences, 11(2), 294-304.
Gilbert, S. F. (2005). Biología del desarrollo. Ed. Médica Panamericana. 902 p.
Hendler, G., Miller, J., Pawson, D., Kierp, P. (1995). Sea stars, sea urchins, and allies echinoderm of Florida and the Caribbean. Smithsonian Institution Press, 199 p.
Heyland, A. & Hodin, J. (2014). A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment. BMC developmental biology, 14(22), 1-14. https://doi.org/10.1186/1471-213X-14-22
Hilber, S.E. & Lawrence, L.M. (2009). Analysis of Sediment and Gut Contents of the Sand Dollars Mellita tenuis, Encope michelini, and Encope aberrans off the Central Florida Gulf Coast. Gulf of Mexico Science, 27(1), 74-81. https://doi.org/10.18785/goms.2701.08
Hinegardner, R.T. (1969). Growth and development of the laboratory cultured sea urchin. Biological Bulletin, 137(3), 465-475. https://doi.org/10.2307/1540168
Kipryushina, Y.O. & Yakovlev, K.V. (2020). Maternal control of early patterning in sea urchin embryos. Differentiation, 113, 28-37. https://doi.org/10.1016/j.diff.2020.04.001
Máximo, M.V., Mottola, L.S.M., Resgalla, C.J. (2008). Sensibilidade do ouriço Arbacia lixula (Echinodermata: Echinoidea) em testes de toxicidade. Journal of the Brazilian Society of Ecotoxicology, 3, 47-52. https://doi.org/10.5132/jbse.2008.01.007
Mcclay, D.R. (2011). Evolutionary crossroads in developmental biology: sea urchins. Development, 138(13), 2639-48. https://doi.org/10.1242/dev.048967
Morin, J.G., Kastendiek, J.E., Harrington, A., Davis, N. (1985). Organization and patterns of interactions in a subtidal sand community on an exposed coast. Marine Ecology Progress Series, 27, 163–185. https://doi.org/10.3354/meps027163
Nesbit, K.T., Fleming, T., Batzel, G., Pouv, A., Rosenblatt, H.D., Pace, D.A., Hamdoun, A., Lyons, D.C. (2019). The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model. Methods in cell biology, 150(5), 105-123. https://doi.org/10.1016/bs.mcb.2018.11.010
Nesbit, K.T. & Hamdoun, A. (2020). Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Developmental Dynamics, 249(11), 1334-1346. https://doi.org/10.1002/dvdy.223
Olivares-Bañuelos, T., Figueroa-Flores, S., Carpizo-Ituarte, E. (2012). Índice gonadal y desarrollo larvario de la galleta de mar Dendraster excentricus (Echinodermata; Echinoidea) en Baja California, México. Ciencias marinas, 38(2), 411-425. https://doi.org/10.7773/cm.v38i2.1922
Pagano, G., Guida, M., Trifuoggi, M., Thomas, P., Palumbo, A., Romano, G., Oral, R. (2017). Sea urchin bioassays in toxicity testing: I. Inorganics, organics, complex mixtures and natural products. Expert Opinion on Environmental Biology, 6(1), 1-10. https://doi.org/10.4172/2325-9655.1000142
Quirós-Rodríguez, J. A. (2015). Equinodermos en fondos someros del sector La Ahumadera, Bahía de Cispatá, Córdoba, Caribe colombiano. Acta Biológica Colombiana, 20(1), 101-108. https://doi.org/10.15446/abc.v20n1.42529
Rahman, M. A., Yusoff, F.M., Arshad, A., Shamsudin, M.N., Amin, S.M.N. (2012). Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea). The Scientific World Journal, 2012, 938482. https://doi.org/10.1100/2012/938482
Sonnenholzner-Varas, J.I., Touron, N., Orrala, V. (2018). Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: A new target species for aquaculture in Ecuador. Aquaculture, 496(1), 134-145. https://doi.org/10.1016/j.aquaculture.2018.07.019
Uthicke, S., Schaffelke, V., Byrne, M. (2009). A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs, 79(1), 3-24. https://doi.org/10.1890/07-2136.1
Vellutini, B.C. & Migotto, A.E. (2010). Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). PLoS ONE, 5(3), e9654. https://doi.org/10.1371/journal.pone.0009654
Wong, J.M., Kozal, L.C., Leach, T.S., Hoshijima, U., Hofmann, G.E. (2019). Transgenerational effects in an ecological context: Conditioning of adult sea urchins to upwelling conditions alters maternal provisioning and progeny phenotype. Journal of Experimental Marine Biology and Ecology, 517, 65-77. https://doi.org/10.1016/j.jembe.2019.04.006

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

