ARIMA models of global solar radiation in the San Jerónimo de Andahuaylas district, Perú
PDF (Spanish)

Keywords

Autoregressive models
solar radiation
stationarity
forecasts
autocorrelations

How to Cite

Quispe-Infantes, R. R. (2025). ARIMA models of global solar radiation in the San Jerónimo de Andahuaylas district, Perú. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3206

Societal impact


Abstract

The San Jerónimo de Apurimac district experiences high solar radiation, which impacts agricultural, livestock, and mining activities. A reliable forecast would increase production and socioeconomic status. Here, we developed and compared autoregressive moving average (ARIMA) models of global solar radiation (GSR) for the San Jerónimo district using the meteorological data from the stations at the José María Arguedas National University (UNAJMA) and the USA National Aeronautics and Space Administration (NASA). We conducted an applied experimental research with a quantitative approach and a propositional descriptive level, with a sample of 1,037 historical RSG data recorded from January 1, 2022, to November 2, 2024 at the ground station using a light sensor and at the space station through documentary techniques of the data from the geostationary operational environmental satellite (GOES) (POWER, 2024). The following normality tests were applied: normal, Q-Q plot, Dickey-Fuller Test, stationarity tests, Levene and D’Agostino tests, simple autocorrelation (ACF) and partial ACF plots for calculating delays, and the Akaike information criterion (AIC) likelihood for choosing the best model. ARIMA(3,0,2) models were obtained for the NASA station and ARIMA(5,0,4) for the UNAJMA station, with mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) values of 0.290; 5.211% and 0.384, respectively, in the first case; and 0.610; 10.623% and 0.702, in the second. Which allowed forecasting the RSG in the district of San Jerónimo from November 3 to 12, 2024.

PDF (Spanish)

References

Ahmed, R., Sreeram, V., Mishra, Y., Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. In Renewable and Sustainable Energy Reviews (Vol. 124). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.109792

Aliberti, A., Fucini, D., Bottaccioli, L., Macii, E., Acquaviva, A., Patti, E. (2021). Comparative Analysis of Neural Networks Techniques to Forecast Global Horizontal Irradiance. IEEE Access, 9, 122829-122846. https://doi.org/10.1109/ACCESS.2021.3110167

Atique, S., Noureen, S., Roy, V., Bayne, S., MacFie, J. (2020). Time series forecasting of total daily solar energy generation: A comparative analysis between ARIMA and machine learning techniques. IEEE Green Technologies Conference, 2020-April, 175-180. https://doi.org/10.1109/GreenTech46478.2020.9289796

Basmadjian, R., Shaafieyoun, A., Julka, S. (2021). Day-ahead forecasting of the percentage of renewables based on time-series statistical methods. Energies, 14(21), 7443. https://doi.org/10.3390/en14217443

Blal, M., Khelifi, S., Dabou, R., Sahouane, N., Slimani, A., Rouabhia, A., Ziane, A., Neçaibia, A., Bouraiou, A., Tidjar, B. (2020). A prediction model for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment. Measurement: Journal of the International Measurement Confederation, 152, 107348. https://doi.org/10.1016/j.measurement.2019.107348

Borda-Luna, B. E. & Lahura-Albujar, N. E. (2022). Riesgos a exposición de radiación solar a trabajadores de limpieza pública, Lima (Perú). Yotantsipanko, 2(2). https://doi.org/10.54288/yotantsipanko.v2i2.22

Boubaker, S., Kamel, S., Kolsi, L., Kahouli, O. (2021). Forecasting of One-Day-Ahead Global Horizontal Irradiation Using Block-Oriented Models Combined with a Swarm Intelligence Approach. Natural Resources Research, 30(1), 1-26. https://doi.org/10.1007/s11053-020-09761-w

Box, G. E. P. & Pierce, D. A. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65 (332), 1509-1526. https://doi.org/10.2307/2284333

Chandra, R. P. & Sahu, B. P. (2024). Time Series Modeling and Forecasting of Finger Millet Cultivation Area, Production and Productivity in Chhattisgarh, India: The Box Jenkins Methodology. Asian Research Journal of Agriculture, 17(4), 18-30. https://doi.org/10.9734/arja/2024/v17i4494

Dimri, T., Ahmad, S., Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. Journal of Earth System Science, 129(1), 149. https://doi.org/10.1007/s12040-020-01408-x

Fan, G.-F., Wei, H.-Z., Chen, M.-Y., Hong, W.-C. (2022). Photovoltaic Power Generation Forecasting Based on the ARIMA-BPNN-SVR Model. Global Journal of Energy Technology Research Updates, 9, 18-38. https://doi.org/10.15377/2409-5818.2022.09.2

Fara, L., Diaconu, A., Craciunescu, D., Fara, S. (2021). Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. International Journal of Photoenergy, 2021, 6777488. https://doi.org/10.1155/2021/6777488

Garg, S., Agrawal, A., Goyal, S., Verma, K. (2020, December 16). Day ahead solar irradiance forecasting using different statistical techniques. 9th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2020. https://doi.org/10.1109/PEDES49360.2020.9379907

Guermoui, M., Melgani, F., Gairaa, K., & Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258, 120357. https://doi.org/10.1016/j.jclepro.2020.120357

Hassan, M. A., Al-Ghussain, L., Ahmad, A. D., Abubaker, A. M., & Khalil, A. (2022). Aggregated independent forecasters of half-hourly global horizontal irradiance. Renewable Energy, 181, 365–383. https://doi.org/10.1016/j.renene.2021.09.060

Hwang, E. (2024). Improvement on forecasting of propagation of the COVID-19 pandemic through combining oscillations in ARIMA models. Forecasting, 6(1), 18–35. https://doi.org/10.3390/forecast6010002

Iqbal, M. (1983). The solar constant and spectral distribution. In An Introduction to Solar Radiation (pp. 43–58). Academic Press. https://doi.org/10.1016/B978-0-12-373750-2.50008-2

Ismail, M. T., Shah, N. Z. A., & Karim, S. A. A. (2021). Modeling solar radiation in peninsular Malaysia using ARIMA model. In Green Energy and Technology (pp. 53–71). Springer. https://doi.org/10.1007/978-981-15-9140-2_3

Jaihuni, M., Basak, J. K., Khan, F., Okyere, F. G., Arulmozhi, E., Bhujel, A., Park, J., Hyun, L. D., & Kim, H. T. (2020). A partially amended hybrid Bi-GRU–ARIMA model (PAHM) for predicting solar irradiance in short and very-short terms. Energies, 13(2), 435. https://doi.org/10.3390/en13020435

Kim, D., Kim, Y., Kim, C., Kim, H., & Lee, Y. (2022). Development of short-term solar irradiance forecasting model using ARIMA and seasonal ARIMA in Daejeon. Journal of the Korean Solar Energy Society, 42(6), 105–114. https://doi.org/10.7836/kses.2022.42.6.105

Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A review of ARIMA vs. machine learning approaches for time series forecasting in data-driven networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255

Kurniadi, A. P., Aimon, H., Salim, Z., Ragimun, Sonjaya, A., Setiawan, S., Siagian, V., Nasution, L. Z., Nurhidajat, R., Mutaqin, & Sabtohadi, J. (2024). Analysis of existing and forecasting for coal and solar energy consumption on climate change in Asia Pacific: New evidence for sustainable development goals. International Journal of Energy Economics and Policy, 14(4), 352–359. https://doi.org/10.32479/ijeep.16187

Liu, Z. F., Luo, S. F., Tseng, M. L., Liu, H. M., Li, L., & Mashud, A. H. M. (2021). Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach. Sustainable Energy Technologies and Assessments, 45, 101048. https://doi.org/10.1016/j.seta.2021.101048

Makade, R. G., Chakrabarti, S., & Jamil, B. (2021). Development of global solar radiation models: A comprehensive review and statistical analysis for Indian regions. Journal of Cleaner Production, 293, 126208. https://doi.org/10.1016/j.jclepro.2021.126208

Mani, G., Joshi Kumar, V., & Stonier, A. A. (2022). Prediction and forecasting of air quality index in Chennai using regression and ARIMA time series models. Journal of Engineering Research (Kuwait), 10(2 A), 179–194. https://doi.org/10.36909/jer.10253

Mellit, A., Pavan, A. M., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences, 10(2), 487. https://doi.org/10.3390/app10020487

Melquíades, T. F., Diniz, F. F., Nunes, A. M. M., Martins, J. M., Santos Júnior, E. P., & Coelho Junior, L. M. (2022). Previsão da radiação solar global em João Pessoa, Paraíba, Brasil: Uma aplicação dos modelos da família ARIMA. Concilium, 22(3), 213–224. https://doi.org/10.53660/clm-197-214

Meng, H., Wu, L., Li, H., & Song, Y. (2023). Construction and research of ultra-short term prediction model of solar short wave irradiance suitable for Qinghai–Tibet Plateau. Atmosphere, 14(7), 1150. https://doi.org/10.3390/atmos14071150

Mirzabe, A. H., Hajiahmad, A., Keyhani, A., & Mirzaei, N. (2022). Approximation of daily solar radiation: A comprehensive review on employing of regression models. Renewable Energy Focus, 41, 143–159. https://doi.org/10.1016/j.ref.2022.02.003

Mohamed, M., Mahmood, F. E., Abd, M. A., Chandra, A., & Singh, B. (2022). Dynamic forecasting of solar energy microgrid systems using feature engineering. IEEE Transactions on Industry Applications, 58(6), 7857–7869. https://doi.org/10.1109/TIA.2022.3199182

Mughal, S. N., Sood, Y. R., & Jarial, R. K. (2022). Design and optimization of photovoltaic system with a week ahead power forecast using autoregressive artificial neural networks. Materials Today: Proceedings, 52, 834–841. https://doi.org/10.1016/j.matpr.2021.10.223

Mutombo, N. M. A., & Numbi, B. P. (2022). The development of ARIMA models for the clear sky beam and diffuse optical depths for HVAC systems design using RTSM: A case study of the Umlazi Township Area, South Africa. Sustainability, 14(6), 3662. https://doi.org/10.3390/su14063662

Nugroho, M. V., Mardiansah, F., Pratama, T. O., Fikriyadi, Z. A., Dianti, D. V., & Prastawa, A. (2024a). A comparative study of the effect of weather conditions on solar irradiance forecasting using various methods in Yogyakarta, Indonesia. Journal of Physics: Conference Series, 2828(1), 012028. https://doi.org/10.1088/1742-6596/2828/1/012028

Nugroho, M. V., Prastawa, A., Mardiansah, F., Rezavidi, A., Fudholi, A., Odejobi, O. A., Alawode, K. O., & Lawal, M. O. (2024b). Efficient method for forecasting solar irradiance – A review. Fudma Journal of Sciences, 8(6), 285–298. https://doi.org/10.33003/fjs-2024-0806-2786

Palaloi, S. (2024). A stacked LSTM model for day-ahead solar irradiance forecasting under tropical seasons in Java-Bali. International Journal of Power Electronics and Drive Systems, 15(3), 1878–1891. https://doi.org/10.11591/ijpeds.v15.i3.pp1878-1891

POWER. (2024). POWER Data Access Viewer. NASA Langley Research Center. https://power.larc.nasa.gov/data-access-viewer/

Quispe, R., & Huamani, R. (2024). Autoregressive models for forecasting wind speed in the rural area of Socabaya, Peru, 2022. Revista Politecnica, 54(1), 7–14. https://doi.org/10.33333/rp.vol54n1.01

Quartey-Papafio, T. K., Javed, S. A., & Liu, S. (2021). Forecasting cocoa production of six major producers through ARIMA and grey models. Grey Systems, 11(3), 434–462. https://doi.org/10.1108/GS-04-2020-0050

Reynaldo, Q., & Verónica, J. (2024). Use of unrestricted minimization of a spectral function to estimate the visible zone in Matlab 19.0. Revista Politecnica, 54(1), 87–96. https://doi.org/10.33333/rp.vol54n1.09

Şahinli, M. A. (2020). Potato price forecasting with Holt-Winters and ARIMA methods: A case study. American Journal of Potato Research, 97(4), 336–346. https://doi.org/10.1007/s12230-020-09788-y

Salman, D., Direkoglu, C., Kusaf, M., & Fahrioglu, M. (2024). Hybrid deep learning models for time series forecasting of solar power. Neural Computing and Applications, 36(16), 9095–9112. https://doi.org/10.1007/s00521-024-09558-5

Santos, D. S. de O., de Mattos Neto, P. S. G., de Oliveira, J. F. L., Siqueira, H. V., Barchi, T. M., Lima, A. R., Madeiro, F., Dantas, D. A. P., Converti, A., Pereira, A. C., de Melo Filho, J. B., & Marinho, M. H. N. (2022). Solar irradiance forecasting using dynamic ensemble selection. Applied Sciences, 12(7), 3510. https://doi.org/10.3390/app12073510

Saxena, N., Kumar, R., Rao, Y. K. S. S., Mondloe, D. S., Dhapekar, N. K., Sharma, A., & Yadav, A. S. (2024). Hybrid KNN-SVM machine learning approach for solar power forecasting. Environmental Challenges, 14, 100838. https://doi.org/10.1016/j.envc.2024.100838

Sedai, A., Dhakal, R., Gautam, S., Dhamala, A., Bilbao, A., Wang, Q., Wigington, A., & Pol, S. (2023). Performance analysis of statistical, machine learning and deep learning models in long-term forecasting of solar power production. Forecasting, 5(1), 256–284. https://doi.org/10.3390/forecast5010014

Tarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. (2023). Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 9, 550–557. https://doi.org/10.1016/j.egyr.2023.01.060

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Downloads

Download data is not yet available.