Abstract
The Sphagnaceae family has ten species recorded in Cuba. All of them are categorized as Threatened in the Red List of the Cuban Flora. However, this is a provisional categorization, and there are not enough criteria to establish a category according to IUCN guidelines. Here, we used climate niche models generated with Maxent to assess the conservation status of these species in the context of climate change. We applied criteria A and B of the Red List of Threatened Species. We estimated the priority areas for the conservation of these bryophytes with the redlistr package for R software. Two of the Sphagnum species evaluated meet enough criteria to be categorized as threatened. Although the Sphagnaceae are protected by the National System of Protected Areas, there are priority areas for their conservation beyond those boundaries. Their conservation status in Cuba is affected by the effects of climate change. The highest mountain systems in eastern Cuba may act as climatic refuges for these bryophytes.
References
Antala, M., Juszczak, R., Tol, C. V. D., Rastogi, A. (2022). Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. Science of the Total Environment, 827, 154-294. https://doi.org/10.1016/j.scitotenv.2022.154294
Burneo, M. & Benítez, Á. (2020). Distribución potencial y áreas prioritarias para la conservación de briófitos en Ecuador. Bosques Latitud Cero, 10(1), 1-13.
Caluff, M. (2020). CUBA: Herbario del Jardín de los Helechos BSC- Bryophyta. Centro Oriental de Ecosistemas y Biodiversidad. Santiago de Cuba.
Campbell, C., Granath, G., Rydin, H. (2021). Climatic drivers of Sphagnum species distributions. Frontiers of Biogeography, 13(4). https://doi.org/10.21425/F5FBG51146
Capote, R. P., Arenal, I. M., Suárez, A. G. (2011). Conservación de la biodiversidad cubana y cambio climático en el archipiélago cubano. Revista Anales de la Academia de Ciencias de Cuba, 1(1), 1-25.
CBC BIOATLAS. (2021). Reporte automático sobre Área Protegida de Recursos Manejados Cuchillas del Toa, Parque Nacional Pico La Bayamesa y Parque Nacional Turquino. https://maps.cbcbio.org/
Centella, A., Gutiérrez, T., Limia, M., Jaspe, R. R. (1999). Climate change scenarios for impact assessment in Cuba. Climate Research, 12(2-3), 223-230. https://doi.org/10.3354/CR012223
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Heimann, M. (2013). Carbon and other biogeochemical cycles. En: Stocker, T., Qin, D., Plattner, G. K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (eds.) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 465-570). Cambridge University Press.
Corlett, R. T. & Westcott., D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28(8), 482-488. https://doi.org/10.1016/j.tree.2013.04.003/
Costa, D. P. (2020). Sphagnaceae. En: BFG. 2021. Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 11(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x/
Fick, S. E., Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086/
Fuentes-Marrero, I. M., González-Oliva, L., Baró-Oviedo, I., González-González Echevarría, M. T., Mancina-González, C. A. (2019). Efecto potencial del cambio climático sobre la distribución de plantas asociadas a bosques húmedos del oriente de Cuba. Acta Botánica Cubana, 218(2), 160-170.
Gates, F. C. (1915). A Sphagnum Bog in the Tropics. Journal of Ecology, 3(1), 24-30. https://doi.org/10.2307/2255294/
GBIF. (2022). Global Biodiversity Information Facility. http://www.gbif.org/
Glime, J. M. (2017). Introduction. En: Glime, J. M. (ed.) Bryophyte ecology (pp. 1-10). Michigan Tech Open Access Publications.
González-Torres, L. R., Palmarola, A., Oliva, L. G., Bécquer, E. R., Testé, E., Barrios, E. (2016). Lista roja de la flora de Cuba. Bissea, 10, 1-352.
Greuter, R. & Rankin, R. (2023). Base de Datos de especímenes de la Flora de Cuba – con mapas de distribución. Versión 16.0. https://ww3.bgbm.org/FloraOfCuba/
Guarat-Planche, R. F., Begué-Quiala, G., Zabala-Lahítte, B., Pérez-Trejo, H. M., Maury-Russo, O., Ramírez-González, D., Santana-González, A. (2021). Plan de Manejo Parque Nacional Alejandro de Humboldt, Quinquenio 2021-2025. Unidad de Servicios Ambientales Alejandro de Humboldt. CITMA.
Gunnarsson, U. (2005). Global patterns of Sphagnum productivity. Journal of Bryology, 27(3), 269-279. https://doi.org/10.1179/174328205X70029/
Hao, J. & Chu., L. M. (2022). Responses of terrestrial mosses to simulated climate change in a secondary evergreen broad-leaved forest in southern China. Journal of Forestry Research, 2022, 1-12.
Harrell, F. E. (2019). Package ‘Hmisc’. CRAN2018 2019: 235-236. https://hbiostat.org/R/Hmisc/
Harzing, A.W. (2010). The publish or perish book. Tarma Software Research Pty Limited.
Heiberger, R. (2018). Package ‘HH’. https://cran.irsn.fr/web/packages/HH/HH.pdf/
IUCN. (2012a). IUCN Red List Categories and Criteria, version 3.1, second edition. Gland and Cambridge.
IUCN. (2012b). Directrices para el uso de los criterios de la Lista Roja de la UICN a nivel regional y nacional, versión 4.0. Gland y Cambridge. http://www.iucnredlist.org/documents/redlist_cats_crit_en.pdf/
IUCN. (2019). Guidelines for Using the IUCN Red List Categories and Criteria, version 14. Standards and Petitions Committee.
Lee, C. K. F., Keith, D. A., Nicholson, E., Murray, N. J. (2019). Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography, 42(5), 1050-1055. https://doi.org/10.1111/ecog.04143/
Li, T.-T., Wang, Z. X., Bu, G. J., Lin, L. Q., Lei, Y., Liu, C. Y., Yang, L. F., Zheng, C. L. (2019). Effects of microtopography and water table on Sphagnum palustre L. in subtropical high mountains and implications for peatland restoration. Journal of Bryology, 41(2), 121-134. https://doi.org/10.1080/03736687.2019.1601446/
Mancina, C. A., Vega-Catalá, C., Domínguez, S. L., Marrero, I. F., Hernández, M. B., Quinta, M. H., Perdomo, H. M. D., Álvarez, M. P., Hernández-Prado, R., Gandía, A. C., Arcila, R. F., Rossell, A. G., Raola, B. N., Gómez-Hechavarría, J. L., Sánchez-Losada, M., Pérez, K. V., Barrios, D., Verdecia, R., Prieto, R. O., Martínez, A. M., Gutiérrez, P. A., González, M. T. (2022). El cambio climático y la biodiversidad en Cuba: Impactos, adaptación y áreas prioritarias para la conservación. Editorial AMA.
Mateo, R. G., Feliclísimo, A. M., Muñoz, J. (2011). Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural, 84, 908-922. https://doi.org/10.1111/j.1654-1103.2010.01198.x/
Michaelis, D. (2012). World of Sphagnum – Distribution Pattern as a Reflection of Ecology and Taxonomy. Proceedings of the 14th International Peat Congress. International Peatland Society. Stockholm, Sweden.
Motito, Á. & Potrony, M. (2010). Diversidad de musgos en Cuba Oriental. Rodriguésia, 61(3), 383-404.
Motito, Á. & Rivera, Y. (2017). Briofitas. En: Mancina, C. A. y Cruz, D. D. (ed.) Diversidad biológica de Cuba: métodos de inventario, monitoreo y colecciones biológicas (pp. 119-133). Editorial AMA.
NASA/GISS. (2018). E2. 1G model output prepared for CMIP6 ISMIP6. Earth System Grid Federation.
Norby, R. J., Childs, J., Hanson, P. J., Warren, J. M. (2019). Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution, 9(22), 12571-12585. https://doi.org/10.1002/ece3.5722/
Oke, T. A. & Hager, H. A. (2017). Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0175978/
ONU. (2015). Segunda Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. La Habana, Cuba.
Pearce, J. & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225-245. https://doi.org/10.1016/S0304-3800(00)00322-7/
Pearson, R. G., Raxworthy, C. J., Nakamura, M., Peterson, A. T. (2006). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x/
Pearson, R. G. (2007). Species’ distribution modelling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50, 54-89.
Pliscoff, P. & Fuentes-Castillo, T. (2011). Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande, 48, 61-79.
QGIS Development Team. (2022). QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org/
Radosavljevic, A., Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41, 629-643. https://doi.org/10.1111/jbi.12227

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales